321 Section, 2-7

Natalie Linnell

Prove or disprove that if a, b, c are positive integers and a|bc then a|b or a|c

How many zeros are there at the end of 100 !

Prove that if n is an odd positive integer, then $n^{2} \equiv 1(\bmod 8)$

Use Fermat's Little Theorem to compute $3^{302} \bmod 5$

Prove that if p is prime, and $x^{2}=1(\bmod p)$ then $x \equiv 1(\bmod p)$ or $x \equiv(p-1)(\bmod p)$

Prove that if m and n are both perfect squares, then nm is a perfect square

-What kind of proof did you do?

Prove that if $3 n+2$ is odd, then n is

 odd- What kind of proof did you do?

Show that the following is a tautology using a truth table

- $((r \rightarrow(p \vee q)) \rightarrow(\neg p \rightarrow(r \rightarrow q))$

Let $\mathrm{D}(\mathrm{x}, \mathrm{y})$ mean "team x defeated team y " and $P(x, y)$ mean "team x has played team y "

- Every team has lost at least one game.
- There is a team that has beaten every team it has played.

True or false: $a \equiv b(\bmod m)$, $a n d b \equiv c$ $(\bmod m)$ implies that $\mathrm{a}^{2} \equiv \mathrm{bc}(\bmod m)$

Is the argument correct? Why?

- Every computer science major takes discrete mathematics. Natasha is taking discrete mathematics. Therefore, Natasha is a computer science major.
- Everyone who eats granola every day is healthy. Linda is not healthy. Therefore, Linda does not eat granola every day.

Show that $((p \vee q) \wedge \neg p) \rightarrow q$ is a tautology using logical equivalences

