321 Section

Natalie Linnell

The importance of domains

- Domain is part of the function definition
- A predicate is a function from some domain to $\{T, F\}$
- If $P(x)$ means that x is odd, the domain can't be the real numbers

$$
\begin{gathered}
\forall x(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})) \\
\forall x \mathrm{P}(\mathrm{x}) \vee \forall x \mathrm{Q}(\mathrm{x})
\end{gathered}
$$

Artificially restricting the domain

- There is someone who has visited every country except for Libya.
$\exists x \forall y(\neg \ln$ With $(x$, Kevin $) \wedge$
$(\neg \operatorname{InWith}(x, y) \vee \neg \operatorname{lnWith}(y$, Kevin)))
- How do you translate this into English?

$$
\begin{gathered}
\forall x(\mathrm{P}(x) \rightarrow \mathrm{Q}(x)) \\
\exists y(\mathrm{P}(x) \wedge \mathrm{Q}(x))
\end{gathered}
$$

Using constants

- There is someone in the class who speaks Hindi.

HW3, Problem 2

Show that if you pick three socks from a drawer containing just blue socks and black socks, you must get either a pair of blue socks or a pair of black socks.

Existence proofs

(it's ok to just give an example!)

$\exists \mathrm{A} \forall \mathrm{B} Q(\mathrm{~A}, \mathrm{~B})$

$\exists B \forall A Q(A, B)$
$Q(A, B)$ iff $A \subseteq B$

Is symmetric difference associative?

What does Fermat's Little Theorem mean?

- $a^{p-1} \bmod p=1$ if p is prime
- Can I use it to solve the following, and if so what's the answer?
- What's $2^{4} \bmod 4$?
- What's $2^{3} \bmod 5$?
- What's $2^{4} \bmod 5$?
- What's $2^{442} \bmod 5$?

Prove that if m and n are both perfect squares, then nm is a perfect square

- What kind of proof did you do?

Prove that if $3 n+2$ is odd, then n is odd

- What kind of proof did you do?

Show that the statement "Every positive integer is the sum of the squares of two integers" is false

