CSE 321 Discrete Structures

Winter 2008

Lecture 24
Relations

Announcements

- Readings
- Today
- 8.3 Representing Relations
- 8.4 Closures (Key idea - transitive closure)
- 8.5 Equivalence Relations (Skim)
- 8.6 Partial Orders
- Next week
- Graph theory

Highlights from Lecture 23

- Digraph representation of relations
- Matrix representation of relations

Matrix multiplication

Standard ($\times,+$) matrix multiplication.
A is a $m \times n$ matrix, B is a $n \times p$ matrix
$C=A \times B$ is a $m \times p$ matrix defined:

$$
\begin{gathered}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]=} \\
{\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right]}
\end{gathered}
$$

And-OR Matrix multiplication

A is a $m \times n$ boolean matrix, B is a $n \times p$ boolean matrix $C=A \otimes B$ is a $m \times p$ matrix defined:

$$
\begin{aligned}
& c_{i j}=\bigvee_{k=1}^{n}\left(a_{i k} \wedge b_{k j}\right) \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \otimes\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]=} \\
& {\left[\begin{array}{lll}
\left(a_{11} \wedge b_{11}\right) \vee\left(a_{12} \wedge b_{21}\right) \vee\left(a_{13} \wedge b_{31}\right) & \left(a_{11} \wedge b_{12}\right) \vee\left(a_{12} \wedge b_{22}\right) \vee\left(a_{13} \wedge b_{32}\right) & \cdots \\
\left(a_{21} \wedge \wedge_{11}\right) \vee\left(a_{22} \wedge b_{21}\right) \vee\left(a_{23} \wedge b_{31}\right) & \left(a_{21} \wedge b_{12}\right) \vee\left(a_{22} \wedge b_{22}\right) \vee\left(a_{23} \wedge b_{32}\right) & \cdots \\
\left(a_{31} \wedge b_{11}\right) \vee\left(a_{32} \wedge b_{21}\right) \vee\left(a_{33} \wedge b_{31}\right) & \left(a_{31} \wedge b_{12}\right) \vee\left(a_{32} \wedge b_{22}\right) \vee\left(a_{33} \wedge b_{32}\right) & \cdots
\end{array}\right]}
\end{aligned}
$$

Matrices and Composition

$M_{S^{\circ} R}=M_{R} \otimes M_{S}$

$$
\begin{aligned}
& R=\{(a, a),(a, c),(b, a), \quad(b, b)\} \\
& S=\{(b, a),(b, c),(c, a),(c, c)\}
\end{aligned}
$$

Closures

- Reflexive Closure
- Symmetric Closure

Transitive Closure

$$
\text { - } R=\{(1,2),(2,3),(3,4)\}
$$

Transitive closure

Equivalence Relations

Definition: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Are these equivalence relations?

- Congruence Mod m on $\mathbf{Z}^{+} . R=\{(a, b) \mid a \equiv b \bmod m\}$
- The 'divides' relation on $\mathbf{Z}^{+} . \mathrm{R}=\{(\mathrm{a}, \mathrm{b})|\mathrm{a}| \mathrm{b}\}$

Equivalence classes

- $R=\{(a, b) \mid a \equiv b \bmod 3\}$, Domain: \mathbf{Z}^{+}

Partial Orderings

Definition: A relation R on a set S is called a partial ordering if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset.

Are these posets?

- (\mathbf{Z}, \geq)
- ($\left.\mathbf{Z}^{+}, \mid\right)$

Total Orderings

Definition: If (S, R) is a poset and every two elements of S are comparable, S is called a totally (linearly) ordered set, and R is called a total (linear) order.

Are these posets totally ordered?

- (\mathbf{Z}, \geq)
- $\left(\mathbf{Z}^{+}, \mid\right)$

