

Announcements

- Readings
- Today
- Section 8.2 n-Ary relations
- Section 8.3 Representing Relations
- Friday (Natalie)
- 8.4 Closures (Key idea - transitive closure)
- 8.5 Equivalence Relations (Skim)
- 8.6 Partial Orders
- Next week
- Graph theory

Highlights from Lecture 22

Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Composition

$S{ }^{\circ} R=\{(a, c) \mid \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$
Transitivity
$(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitivity and Composition

R is transitive if and only if $R^{n} \subseteq R$ for all $n \geq 1$
\square
n-ary relations

Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$.

Student_Name	ID_Number	Major	GPA
Knuth	328012098	CS	4.00
Von Neuman	481080220	CS	3.78
Von Neuman	481080220	Mathematics	3.78
Russell	238082388	Philosophy	3.85
Einstein	238001920	Physics	2.11
Newton	1727017	Mathematics	3.61
Karp	348882811	CS	3.98
Newton	1727017	Physics	3.61
Bernoulli	2921938	Mathematics	3.21
Bernoulli	2921939	Mathematics	3.54

Alternate Approach				
Student_ID	Name	GPA	Student_ID	Major
328012098	Knuth	4.00	328012098	CS
481080220	Von Neuman	3.78	481080220	CS
238082388	Russell	3.85	481080220	Mathematics
238001920	Einstein	2.11	238082388	Philosophy
1727017	Newton	3.61	238001920	Physics
348882811	Karp	3.98	1727017	Mathematics
2921938	Bernoulli	3.21	348882811	CS
2921939	Bernoulli	3.54	1727017	Physics
			2921938	Mathematics
			2921939	Mathematics

Database Operations

Projection

Join

Select

Representation of relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Matrix Operations
How do you tell if a relation is reflexive from its adjacency matrix?
How do you tell if a relation is symmetric from its adjacency matrix?
Suppose R has matrix M_{R} and S has Matrix M_{S}.
What are the matrices for $R \cup S$ and $R \cap S$?

Matrix multiplication

Standard ($\times,+$) matrix multiplication.
A is a $m \times n$ matrix, B is a $n \times p$ matrix
$C=A \times B$ is a $m \times p$ matrix defined:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \times\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]=$
$\left[\begin{array}{lll}a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\ a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} 3_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\ a_{2} b_{11}\end{array}\right]$ $a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} \quad a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} \quad a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33}$ $\left[\begin{array}{lll}a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}\end{array}\right]$

And-OR Matrix multiplication

A is a $m \times n$ boolean matrix, B is a $n \times p$ boolean matrix $C=A \otimes B$ is a $m \times p$ matrix defined:

$$
c_{i j}=\bigvee_{k=1}^{n}\left(a_{i k} \wedge b_{k j}\right)
$$

$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \otimes\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]=$

$$
\left[\left(a_{11} \wedge b_{11}\right) \vee\left(a_{12} \wedge b_{21}\right) \vee\left(a_{13} \wedge b_{31}\right) \quad\left(a_{11} \wedge b_{12}\right) \vee\left(a_{12} \wedge b_{22}\right) \vee\left(a_{13} \wedge b_{32}\right)\right.
$$ $\left(a_{21} \wedge b_{11}\right) \vee\left(a_{22} \wedge b_{21}\right) \vee\left(a_{23} \wedge b_{31}\right) \quad\left(a_{21} \wedge b_{12}\right) \vee\left(a_{22} \wedge b_{22}\right) \vee\left(a_{23} \wedge b_{32}\right)$ $\left(a_{31} \wedge b_{11}\right) \vee\left(a_{32} \wedge b_{21}\right) \vee\left(a_{33} \wedge b_{31}\right) \quad\left(a_{31} \wedge b_{12}\right) \vee\left(a_{32} \wedge b_{22}\right) \vee\left(a_{33} \wedge b_{32}\right)$

Matrices and Composition

$M_{S^{\circ} R}=M_{R} \otimes M_{S}$
$R=\{(a, a),(a, c),(b, a),(b, b)\}$
$S=\{(b, a),(b, c),(c, a),(c, c)\}$

