

Highlights from Lecture 20: Bayes' Theorem

Suppose that E and F are events from a sample space S such that $p(E)>0$ and $p(F)>0$. Then
$p(F \mid E)=\frac{p(E \mid F) p(F)}{p(E \mid F) p(F)+p(E \mid \bar{F}) p(\bar{F})}$

Expectation

The expected value of random variable $X(s)$ on sample space S is:

$$
\begin{aligned}
& E(X)=\sum_{x \in S} p(s) X(s) \\
& E(X)=\sum_{r \in X(S)} p(X=r) r
\end{aligned}
$$

Announcements

- Readings
- Probability Theory
- 6.4 (5.3) Expectation
- Advanced Counting Techniques - Ch 7.
- Not covered
- Relations
- Chapter 8 (Chapter 7)

Testing for disease

Disease is very rare: $p(D)=1 / 100,000$
Testing is accurate:
False negative: 1\%
False positive: 0.5\%
Suppose you get a positive result, what do you conclude?
$p(D \mid Y) \cong 1 / 500$

Flip a coin until the first head Expected number of flips?

Probability Space:

Computing the expectation:

Hashing analysis

Sample space: $[0 . . n-1] \times[0 . . n-1] \times \ldots \times[0 . . n-1]$

Random Variables
$\mathrm{X}_{\mathrm{j}}=$ number of elements hashed to bucket j
$\mathrm{C}=$ total number of collisions
$B_{i j}=1$ if element i hashed to bucket j
$B_{i j}=0$ if element i is not hashed to bucket j
$C_{a b}=1$ if element a is hashed to the same bucket as element b
$\mathrm{C}_{\mathrm{ab}}=0$ if element a is hashed to a different bucket than element b

Hashing

$H: M \rightarrow[0 . . n-1]$

If k elements have been hashed to random locations, what is the expected number of elements in bucket j?

What is the expected number of collisions when hashing k elements to random locations?

Counting inversions

Let $p_{1}, p_{2}, \ldots, p_{n}$ be a permutation of $1 \ldots n$ p_{i}, p_{j} is an inversion if $i<j$ and $p_{i}>p_{j}$
$4,2,5,1,3$
$1,6,4,3,2,5$
$7,6,5,4,3,2,1$

Expected number of inversions for a random permutation

Insertion sort

Expected number of swaps for Insertion Sort

Left to right maxima

max_so_far:=A[0];
for $i:=1$ to $n-1$
if ($\mathrm{A}[\mathrm{i}]>$ max_so_far) max_so_far:=A[i];
$5,16,9,14,11,18,7,2,1,20,3,19,10,15,4,6,17,18,8$

What is the expected number of left-toright maxima in a random permutation

