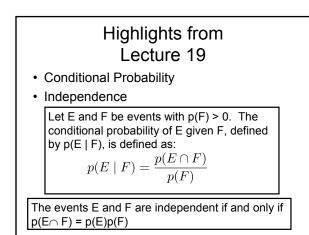
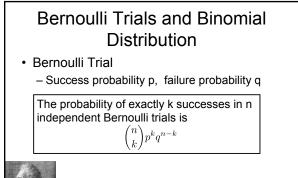


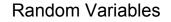
Winter 2008 Lecture 20 Probability: Bernoulli, Random Variables, Bayes' Theorem



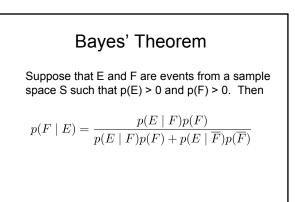
- Readings
 - Probability Theory
 - 6.1, 6.2 (5.1, 5.2) Probability Theory
 - 6.3 (New material!) Bayes' Theorem
 - 6.4 (5.3) Expectation
 - Advanced Counting Techniques Ch 7.
 - Not covered
 - Relations
 - Chapter 8 (Chapter 7)

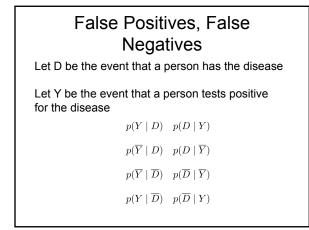






A random variable is a function from a sample space to the real numbers



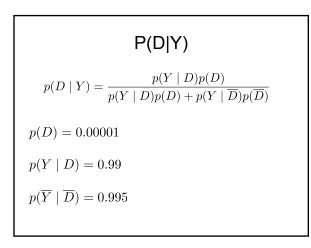


Testing for disease

Disease is very rare: p(D) = 1/100,000

Testing is accurate: False negative: 1% False positive: 0.5%

Suppose you get a positive result, what do you conclude?



Bayesian Spam filters

- · Classification domain
 - Cost of false negative
 - Cost of false positive
- Criteria for spam
 - v1agra, ONE HUNDRED MILLION USD
- Basic question: given an email message, based on spam criteria, what is the probability it is spam

Email message with phrase "Account Review"

- 250 of 20000 messages known to be spam
- 5 of 10000 messages known not to be spam
- Assuming 50% of messages are spam, what is the probability that a message with "Account Review" is spam

$$p(S \mid A) = \frac{p(A \mid S)p(S)}{p(A \mid S)p(S) + p(A \mid \overline{S})p(\overline{S})}$$

Proving Bayes' Theorem $p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid \overline{F})p(\overline{F})}$ $p(E \mid F) = \frac{p(E \cap F)}{p(F)} \quad p(F \mid E) = \frac{p(E \cap F)}{p(E)}$ $p(E) = p(E \mid F)p(F) + p(E \mid \overline{F})p(\overline{F})$

Expectation

The expected value of random variable X(s) on sample space S is:

$$E(X) = \sum_{x \in S} p(s)X(s)$$

Expectation examples

Number of heads when flipping a coin 3 times

Sum of two dice

Successes in n Bernoulli trials with success probability p