Announcements

- Readings
 - Probability Theory
 - 6.1, 6.2 (5.1, 5.2) Probability Theory
 - 6.3 (New material!) Bayes’ Theorem
 - 6.4 (5.3) Expectation
 - Advanced Counting Techniques – Ch 7.
 - Not covered
 - Relations
 - Chapter 8 (Chapter 7)

Highlights from Lecture 19

- Conditional Probability
- Independence

Let E and F be events with p(F) > 0. The conditional probability of E given F, defined by p(E | F), is defined as:

\[p(E | F) = \frac{p(E \cap F)}{p(F)} \]

The events E and F are independent if and only if p(E \cap F) = p(E)p(F)

Bernoulli Trials and Binomial Distribution

- Bernoulli Trial
 - Success probability p, failure probability q

The probability of exactly k successes in n independent Bernoulli trials is

\[\binom{n}{k} p^k q^{n-k} \]

Random Variables

A random variable is a function from a sample space to the real numbers

Bayes’ Theorem

Suppose that E and F are events from a sample space S such that p(E) > 0 and p(F) > 0. Then

\[p(F | E) = \frac{p(E | F)p(F)}{p(E | F)p(F) + p(E | \overline{F})p(\overline{F})} \]
False Positives, False Negatives

Let D be the event that a person has the disease

Let Y be the event that a person tests positive for the disease

\[p(Y \mid D) \quad p(D \mid Y) \]
\[p(\overline{Y} \mid D) \quad p(D \mid \overline{Y}) \]
\[p(\overline{Y} \mid \overline{D}) \quad p(\overline{D} \mid \overline{Y}) \]
\[p(Y \mid \overline{D}) \quad p(D \mid Y) \]

Testing for disease

Disease is very rare: \(p(D) = \frac{1}{100,000} \)

Testing is accurate:
- False negative: 1%
- False positive: 0.5%

Suppose you get a positive result, what do you conclude?

\[P(D \mid Y) \]

\[p(D \mid Y) = \frac{p(Y \mid D)p(D)}{p(Y \mid D)p(D) + p(Y \mid \overline{D})p(\overline{D})} \]

\[p(D) = 0.000001 \]

\[p(Y \mid D) = 0.99 \]

\[p(\overline{Y} \mid D) = 0.995 \]

Bayesian Spam filters

- Classification domain
 - Cost of false negative
 - Cost of false positive
- Criteria for spam
 - v1agra, ONE HUNDRED MILLION USD
- Basic question: given an email message, based on spam criteria, what is the probability it is spam

Email message with phrase “Account Review”

- 250 of 20000 messages known to be spam
- 5 of 10000 messages known not to be spam
- Assuming 50% of messages are spam, what is the probability that a message with “Account Review” is spam

\[p(S \mid A) = \frac{p(A \mid S)p(S)}{p(A \mid S)p(S) + p(A \mid \overline{S})p(\overline{S})} \]

Spam Filtering

From: Zambia Nation Farmers Union [znfukabwe@mail.zamtel.zm]
Subject: Letter of assistance for school installation
To: Richard Anderson

Dear Richard,
I hope you are fine, I am through talking to local headmen about the possible assistance of school installation. The idea is and will be welcome. I trust that you will do your best as I await for more from you. Once again
Thanking you very much
Sebastian Mazuba.
Proving Bayes’ Theorem

\[p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid \overline{F})p(\overline{F})} \]

\[p(E \mid F) = \frac{p(E \cap F)}{p(F)} \quad p(F \mid E) = \frac{p(E \cap F)}{p(E)} \]

\[p(E) = p(E \mid F)p(F) + p(E \mid F)p(\overline{F}) \]

Expectation

The expected value of random variable \(X(s)\) on sample space \(S\) is:

\[E(X) = \sum_{s \in S} p(s)X(s) \]

Expectation examples

- Number of heads when flipping a coin 3 times
- Sum of two dice
- Successes in \(n\) Bernoulli trials with success probability \(p\)