

Announcements

- Readings
 - Probability Theory
 - 6.1, 6.2 (5.1, 5.2) Probability Theory
 - 6.3 (New material!) Bayes' Theorem
 - 6.4 (5.3) Expectation
 - Advanced Counting Techniques Ch 7.
 - Not covered

Highlights from Lecture 18

- Experiment
- Sample Space
- Event
- · Probability

Combinations of Events

 E^C is the complement of E

 $P(E^{C}) = 1 - P(E)$

 $\mathsf{P}(\mathsf{E}_1 \cup \mathsf{E}_2) = \mathsf{P}(\mathsf{E}_1) + \mathsf{P}(\mathsf{E}_2) - \mathsf{P}(\mathsf{E}_1 \cap \mathsf{E}_2)$

Probability Concepts

- · Probability Distribution
- Conditional Probability
- Independence
- Bernoulli Trials / Binomial Distribution
- Random Variable

Discrete Probability Theory

- · Set S
- Probability distribution p : $S \rightarrow [0,1]$ $\mbox{ For } s \in S, \ 0 \leq p(s) \leq 1$
 - $-\Sigma_{s \in S} p(s) = 1$
- Event E, E⊆ S
- $p(E) = \sum_{s \in E} p(s)$

Let E and F be even conditional probabilit	ts with p(F) > 0. The ty of E given F, defined
by p(E F), is define	d as:
$p(E \mid F) =$	$\frac{p(E\cap F')}{p(F)}$

The probability of exactly k successes in n independent Bernoulli trials is $\binom{n}{k}p^kn^{n-k}$

Random Variables

A random variable is a function from a sample space to the real numbers