

#### Announcements

#### Readings

#### Counting

- 5.5, (4.5) Generalized Permutations and Combinations
- Probability Theory
  - 6.1, 6.2 (5.1, 5.2) Probability Theory
  - 6.3 (New material!) Bayes' Theorem
  - 6.4 (5.3) Expectation
- Advanced Counting Techniques Ch 7.
  - Not covered

Highlights from Lecture 17 • Permutations  $P(n,r) = n(n-1)(n-2)\cdots(n-r+1) = \frac{n!}{(n-r)!}$ • Combinations

$$C(n,r) = \binom{n}{r} = \frac{n!}{(n-r)!r!}$$

### How many

- Let  $s_1$  be a string of length n over  $\Sigma_1$
- Let  $s_2$  be a string of length m over  $\Sigma_2$
- Assuming  $\Sigma_1$  and  $\Sigma_2$  are distinct, how many interleavings are there of  $s_1$  and  $s_2$ ?

# Permutations with repetition

## Combinations with repetition

 How many different ways are there of selecting 5 letters from {A, B, C} with repetition How many non-decreasing sequences of {1,2,3} of length 5 are there? How many different ways are there of adding 3 non-negative integers together to get 5 ? 1+2+2 •  $| \bullet \bullet | \bullet \bullet$ 2+0+3 • •  $| | \bullet \bullet \bullet$ 0+1+43+1+15+0+0

C(n+r-1,n-1) r-combinations of an n element set with repetition

# Permutations of indistinguishable objects

- How many different strings can be made from reordering the letters ABCDEFGH
- How many different strings can be made from reordering the letters AAAABBBB
- How many different strings can be made from reordering the letters GOOOOGLE







## Combinations of Events

E<sup>c</sup> is the complement of E

 $P(E^{C}) = 1 - P(E)$ 

 $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$