

Announcements

- Readings
- Counting
- 5.5, (4.5) Generalized Permutations and Combinations
- Probability Theory
- 6.1, 6.2 (5.1, 5.2) Probability Theory
- 6.3 (New material!) Bayes' Theorem
- 6.4 (5.3) Expectation
- Advanced Counting Techniques - Ch 7.
- Not covered

Highlights from Lecture 17

- Permutations
$P(n, r)=n(n-1)(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!}$
- Combinations

$$
C(n, r)=\binom{n}{r}=\frac{n!}{(n-r)!r!}
$$

How many

- Let s_{1} be a string of length n over Σ_{1}
- Let s_{2} be a string of length m over Σ_{2}
- Assuming Σ_{1} and Σ_{2} are distinct, how many interleavings are there of s_{1} and s_{2} ?

Combinations with repetition

- How many different ways are there of selecting 5 letters from $\{A, B, C\}$ with repetition

How many non-decreasing sequences of $\{1,2,3\}$ of length 5 are there?

$C(n+r-1, n-1) r$-combinations of

 an n element set with repetitionHow many different ways are there of adding 3 non-negative integers together to get 5 ?
$1+2+2$
$2+0+3$
$0+1+4$
$3+1+1$
$5+0+0$ get 5 ?
$\bullet \mid \bullet \bullet-\bullet$
$\bullet \bullet|\mid \bullet \bullet$

Permutations of indistinguishable objects

- How many different strings can be made from reordering the letters ABCDEFGH
- How many different strings can be made from reordering the letters $A A A A B B B B$
- How many different strings can be made from reordering the letters GOOOOGLE

Discrete Probability
Experiment: Procedure that yields an outcome
Sample space: Set of all possible outcomes
Event: subset of the sample space
S a sample space of equally likely outcomes,
E an event, the probability of $\mathrm{E}, \mathrm{p}(\mathrm{E})=\|\mathrm{E}\| / \mathrm{S} \mid$

Combinations of Events

E^{C} is the complement of E
$P\left(E^{C}\right)=1-P(E)$
$P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)$

