

## Announcements

- Readings
- Counting
- 5.3, (4.3) Permutations and Combinations
-5.4, (4.4) Binomial Coefficients
- 5.5, (4.5) Generalized Permutations and Combinations
- Homework


## Highlights from Lecture 16

- Counting
- Product Rule
- $\left|\mathrm{A}_{1} \times \mathrm{A}_{2}\right|=\left|\mathrm{A}_{1}\right|\left|\mathrm{A}_{2}\right|$
- Sum Rule
- $A_{1}$ and $A_{2}$ disjoint, $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|$
- Inclusion-Exclusion
- $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|$
- Pigeon Hole Principle


## Proof

- Let $a_{1}, \ldots . a_{m}$ be a sequence of $n^{2}+1$ distinct numbers
- Let $i_{k}$ be the length of the longest increasing sequence starting at $\mathrm{a}_{\mathrm{k}}$
- Let $d_{k}$ be the length of the longest decreasing sequence starting at $a_{k}$
- Suppose $\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$ and $\mathrm{d}_{\mathrm{k}} \leq \mathrm{n}$ for all k
- There must be k and $\mathrm{j}, \mathrm{k}<\mathrm{j}$, with $\mathrm{i}_{\mathrm{k}}=\mathrm{i}_{\mathrm{j}}$ and $\mathrm{d}_{\mathrm{k}}=\mathrm{d}_{\mathrm{j}}$


## Clever PHP Applications

- Every sequence of $\mathrm{n}^{2}+1$ distinct numbers contains a subsequence of length $\mathrm{n}+1$ that is either strictly increasing or strictly decreasing.
$4,22,8,15,19,11,2,1,9,20,10,7,16,3,6,5,14$


## Permutations vs. Combinations

- How many ways are there of selecting $1^{\text {st }}$, $2^{\text {nd }}$, and $3^{\text {rd }}$ place from a group of 10 sprinters?
- How many ways are there of selecting the top three finishers from a group of 10 sprinters?


## r-Permutations

- An r-permutation is an ordered selection of $r$ elements from a set
- $P(n, r)$, number of $r$-permutations of an $n$ element set

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!}
$$

## r-Combinations

- An r-combination is an unordered selection of $r$ elements from a set (or just a subset of size r)
- $C(r, n)$, number of $r$-permutations of an $n$ element set

$$
C(n, r)=\binom{n}{r}=\frac{n!}{(n-r)!r!}
$$

## Prove C(n, r) = C(n, n-r) [Proof 1]

- Proof by formula

$$
\begin{gathered}
\binom{n}{r}=\frac{n!}{r!(n-r)!} \\
\binom{n}{n-r}=\frac{n!}{(n-r)!(n-(n-r))!}=\frac{n!}{(n-r)!r!}
\end{gathered}
$$

## How many

- Binary strings of length 10 with 30 's
- Binary strings of length 10 with 7 1's
- How many different ways of assigning 38 students to the 5 seats in the front of the class
- How many different ways of assigning 38 students to a table that seats 5 students


## Prove $\mathrm{C}(\mathrm{n}, \mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{n}-\mathrm{r})$ [Proof 2]

- Combinatorial proof


## Counting paths

- How many paths are there of length $\mathrm{n}+\mathrm{m}-2$ from the upper left corner to the lower right corner of an $\mathrm{n} \times \mathrm{m}$ grid?




## Binomial Coefficient Identities

 from the Binomial Theorem$$
\begin{gathered}
\sum_{k=0}^{n}\left(\begin{array}{l}
n \\
k
\end{array} x^{n-k} y^{k}=(x+y)^{n}\right. \\
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}(-1)^{k}\left(\begin{array}{l}
n \\
k \\
k
\end{array}\right)=0 \\
\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}
\end{gathered}
$$

## Pascal's Identity and Triangle

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$



