

Highlights from Lecture 15

Structural Induction

Recursive Definition

- $\lambda \in L$
- w \in L, x \in {a, b} then wxx \in L
- Recursive Function
 - $len(\lambda) = 0$
 - $w \in \Sigma^*$, $x \in \Sigma$, len(wx) = 1 + len(w)
- Prove all words in L have even length

Counting

Determining the number of elements of a finite set

Counting Rules

Product Rule: If there are n_1 choices for the first item and n_2 choices for the second item, then there are n_1n_2 choices for the two items

Sum Rules: If there are n_1 choices of an element from S_1 and n_2 choices of an element from S_2 and $S_1 \cap S_2$ is empty, then there are n_1 + n_2 choices of an element from $S_1 \cup S_2$

Counting examples

License numbers have the form LLL DDD, how many different license numbers are available?

There are 38 students in a class, and 38 chairs, how many different seating arrangements are there if everyone shows up?

How many different predicates are there on $\Sigma = \{a, ..., z\}$?

Important cases of the Product Rule

- Cartesian product $-|A_1 \times A_2 \times \ldots \times A_n| = |A_1||A_2| \ldots |A_n|$
- Subsets of a set S

 |P(S)|= 2^{|S|}
- Strings of length n over Σ - $|\Sigma^n| = |\Sigma|^n$

Counting Functions

Suppose |S| = n, |T| = mHow many functions from S to T?

How many one-to-one functions from S to T?

More complicated counting examples

- BASIC variable names
 - Variables can be one or two characters long
 - The first character must be a letter
 - The second character can be a letter or a digit
 - The keywords "TO", "IF", and "DO" are excluded

Counting Passwords

 Passwords must be 4 to 6 characters long, and must contain at least on letter and at least one digit. (Case insensitive, no special characters)

Inclusion-Exclusion Principle $\begin{bmatrix} [A_1 \cup A_2] &= |A_1| + |A_2| - |A_1 \cap A_2| \end{bmatrix}$ • How many strings of length 9 start with 00 or end with 11

CS majors?

PHP Applications

- Prove that if a city has at least 10 million phone subscribers it needs more than one area code. (Phone numbers of the form NXX-XXXX.)
- Prove that if you have 800 people, at least three share a common birthday.

Clever PHP Applications

• Every sequence of n² + 1 distinct numbers contains a subsequence of length n+1 that is either strictly increasing or strictly decreasing.

 $4,\,22,\,8,\,15,\,19,\,11,\,2,\,1,\,9,\,20,\,10,\,7,\,16,\,3,\,6,\,5,\,14$

Proof

- Let $a_1, \ldots a_m$ be a sequence of n²+1 distinct numbers
- + Let \mathbf{i}_k be the length of the longest increasing sequence starting at \mathbf{a}_k
- + Let d_k be the length of the longest decreasing sequence starting at a_k
- Suppose $i_k \leq n \text{ and } d_k \leq n \text{ for all } k$
- + There must be k and j, k < j, with $i_k = i_j$ and $d_k = d_j$