

Highlights from Lecture 14

- Recursive Definitions
- Sets
- $0 \in S$;
- if $x \in S$ then $x+2 \in S$
- Strings
- $\lambda \in L$
$\cdot w \in L, x \in\{a, b\}$ then $w x \in L$ - Trees
- $\varepsilon \in$ EBT
- if $T_{1}, T_{2} \in E B T$, then $\left(\bullet, T_{1}, T_{2}\right) \in E B T$

Announcements

- Readings
- Today:
- Structural Induction
$-6^{\text {th }}$ edition: 4.3, $5^{\text {th }}$ edition: 3.4 ,
- Friday:
- Counting
$-6^{\text {th }}$ edition: 5.1,5.2, $5^{\text {th }}$ edition: 4.1, 4.2

Recursive Functions on Trees

- $N(T)$ - number of vertices of T
- $\mathrm{N}(\varepsilon)=0 ; \mathrm{N}(\bullet)=1$
- $\mathrm{N}\left(\cdot, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)=1+\mathrm{N}\left(\mathrm{T}_{1}\right)+\mathrm{N}\left(\mathrm{T}_{2}\right)$
- $\mathrm{Ht}(\mathrm{T})$ - height of T
- $\mathrm{Ht}(\varepsilon)=0 ; \mathrm{Ht}(\bullet)=1$
- $\mathrm{Ht}\left(\bullet, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)=1+\max \left(\mathrm{Ht}\left(\mathrm{T}_{1}\right), \mathrm{Ht}\left(\mathrm{T}_{2}\right)\right)$

NOTE: Height definition differs from the text
Base case $\mathrm{H}(\cdot)=0$ used in text

And more trees:

Almost balanced trees

- ε is a ABT.
- if T_{1} and T_{2} are ABTs with $\mathrm{Ht}\left(\mathrm{T}_{1}\right)-1 \leq \mathrm{Ht}\left(\mathrm{T}_{2}\right) \leq \mathrm{Ht}\left(\mathrm{T}_{1}\right)+1$ then $\left(\bullet, T_{1}, T_{2}\right)$ is a ABT.

Prove all elements of S are divisible by 3

- Basis: $21 \in \mathrm{~S} ; 24 \in \mathrm{~S}$;
- Recursive: if $x, y \in S$, then $x+y \in S$;

Well Formed Fomulae

- Basis Step
$-T, F$, and s, where is a propositional variable are in WFF
- Recursive Step
- If E and F are in WFF then $(\neg E)$, $(E \wedge F)$, $(E \vee F),(E \rightarrow F)$ and $(E \leftrightarrow F)$ are in WFF

Structural Induction

- Show P holds for all basis elements of S.
- Show that if P holds for elements used to construct a new element of S, then P holds for the new element.

Prove that WFFs have the same number of left parentheses as right parentheses

Fully Balanced Binary Tree

- If T is a FBB , then $\mathrm{N}(\mathrm{T})=2^{\mathrm{Ht}(\mathrm{T})}-1$

Binary Trees

- If T is a binary tree, then $\mathrm{N}(\mathrm{T}) \leq 2^{\mathrm{H}(\mathrm{T})}-1$

If $\mathrm{T}=\varepsilon$:
If $T=\left(\cdot T_{1}, T_{2}\right) \quad H t\left(T_{1}\right)=x, H\left(T_{2}\right)=y$
$N\left(T_{1}\right) \leq 2^{x}, N\left(T_{2}\right) \leq 2^{y}$
$N(T)=N\left(T_{1}\right)+N\left(T_{2}\right)+1$
$\leq 2^{x}-1+2^{y}-1+1$
$\leq 2^{H(T)-1}+2^{H(T)}-1-1$
$\leq 2^{H(T)}-1$

Almost Balanced Binary Trees

```
Let \alpha = (1 + sqrt(5))/2
Prove N(T) \geq\mp@subsup{\alpha}{}{H(T)}-1
Base case:
Recursive Case: T = (\bullet, T T, T T)
Let Ht(T) = k + 1
Suppose Ht(T
Ht(T
```


Almost Balanced Binary Trees

$$
\begin{array}{rlr}
N(T) & =N\left(T_{1}\right)+N\left(T_{2}\right)+1 & \\
& \geq \alpha^{k}-1+\alpha^{k-1}-1+1 \quad\left[\alpha^{2}=\alpha+1\right] \\
& \geq \alpha^{k}+\alpha^{k-1}-1 \\
& \geq \alpha^{k+1}-1 &
\end{array}
$$

