CSE 321 Discrete Structures

Winter 2008 Lecture 15 Structural Induction

Announcements

Recursive Functions on Trees • N(T) - number of vertices of T • N(ε) = 0; N(•) = 1 • N(•, T₁, T₂) = 1 + N(T₁) + N(T₂) • Ht(T) - height of T • Ht(ε) = 0; Ht(•) = 1 • Ht(ε , T₁, T₂) = 1 + max(Ht(T₁), Ht(T₂))

NOTE: Height definition differs from the text Base case $H(\bullet) = 0$ used in text

More tree definitions: Fully balanced binary trees

- ϵ is a FBBT.
- if T_1 and T_2 are FBBTs, with Ht(T_1) = Ht(T_2), then (•, T_1 , T_2) is a FBBT.

And more trees: Almost balanced trees

- ϵ is a ABT.
- if T_1 and T_2 are ABTs with Ht(T_1) -1 \leq Ht(T_2) \leq Ht(T_1)+1 then (•, T_1 , T_2) is a ABT.

Structural Induction

- Show P holds for all basis elements of S.
- Show that if P holds for elements used to construct a new element of S, then P holds for the new element.

Prove all elements of S are divisible by 3

- Basis: $21 \in S; 24 \in S;$
- Recursive: if $x, y \in S$, then $x + y \in S$;

Prove that WFFs have the same number of left parentheses as right parentheses

Well Formed Fomulae

- · Basis Step
 - T, F, and s, where is a propositional variable are in WFF
- Recursive Step
 - If E and F are in WFF then $(\neg E)$, $(E \land F)$, $(E \lor F)$, $(E \to F)$ and $(E \leftrightarrow F)$ are in WFF

Fully Balanced Binary Tree

• If T is a FBBT, then $N(T) = 2^{Ht(T)} - 1$

Binary Trees

- If T is a binary tree, then $N(T) \leq 2^{Ht(T)}$ - 1

If T = ε :

```
\begin{split} & \text{If } T = (\bullet, T_1, T_2) & \text{Ht}(T_1) = x, \text{Ht}(T_2) = y \\ & \text{N}(T_1) \leq 2^x, \quad \text{N}(T_2) \leq 2^y \\ & \text{N}(T) = \text{N}(T_1) + \text{N}(T_2) + 1 \\ & \leq 2^x - 1 + 2^y - 1 + 1 \\ & \leq 2^{\text{Ht}(T) - 1} + 2^{\text{Ht}(T) - 1} - 1 \\ & \leq 2^{\text{Ht}(T) - 1} - 1 \end{split}
```

Almost Balanced Binary Trees

$$\begin{split} & \text{Let } \alpha = (1 + \text{sqrt}(5))/2 \\ & \text{Prove } N(T) \geq \alpha^{\text{Ht}(T)} - 1 \\ & \text{Base case:} \\ & \text{Recursive Case: } T = (\bullet, \ T_1, \ T_2) \\ & \text{Let } \text{Ht}(T) = k + 1 \\ & \text{Suppose } \text{Ht}(T_1) \geq \text{Ht}(T_2) \\ & \text{Ht}(T_1) = k, \ \text{Ht}(T_2) = k \text{ or } k\text{-}1 \end{split}$$

Almost Balanced Binary Trees

```
\begin{split} \mathsf{N}(\mathsf{T}) &= \mathsf{N}(\mathsf{T}_1) + \mathsf{N}(\mathsf{T}_2) + 1 \\ &\geq \alpha^k - 1 + \ \alpha^{k-1} - 1 + 1 \\ &\geq \alpha^k + \alpha^{k-1} - 1 \qquad \qquad [\alpha^2 = \alpha + 1] \\ &\geq \alpha^{k+1} - 1 \end{split}
```