

Announcements

- Readings
- This week:
- $6^{\text {th }}$ edition: $4.3,4.4,5.1,5.2$
- $5^{\text {th }}$ edition: $3.4,3.5,4.1,4.2$
- Midterm:
- Mean 67, Median 68

$81+$	4
$71-80$	10
$61-70$	16
$51-60$	7
$0-50$	1

Induction Example (revisited)

- Given a set S of $n+1$ positive integers, none exceeding $2 n$, show that S is divisible.
- Paul Beame's proof
- Let $\mathrm{S} \subseteq\{1, \ldots, 2 n\}$ be non-divisible
- Every element in S can be written as $m 2^{i}$ where m is odd
- We cannot have $m 2^{i}$ and $m 2^{j}$ both in S
- Hence $|\mathrm{S}| \leq \mathrm{n}$

Highlights from Lecture 14

- Recursive Definitions
$-F(0)=1 ; F(n+1)=2^{\star} F(n)$
$-f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis: $[1,1,0] \in S,[0,1,1] \in S$;
Recursive:
if $[x, y, z] \in S, \alpha$ in R, then $[\alpha x, \alpha y, \alpha z] \in S$
if $\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S$
then $\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right]$

Powers of 3

Strings

- The set Σ^{*} of strings over the alphabet Σ is defined
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

Function definitions

Len $(\lambda)=0$;

$\operatorname{Len}(w x)=1+\operatorname{Len}(w) ;$ for $w \in \Sigma^{*}, x \in \Sigma$

Concat $(w, \lambda)=w$ for $w \in \Sigma^{*}$
Concat $\left(w_{1}, w_{2} x\right)=\operatorname{Concat}\left(w_{1}, w_{2}\right) x$ for w_{1}, w_{2} in $\Sigma^{*}, x \in \Sigma$

Families of strings over $\Sigma=\{a, b\}$

- L_{1}
$-\lambda \in L_{1}$
$-w \in L_{1}$ then $a w b \in L_{1}$
- L_{2}
$-\lambda \in L_{2}$
$-w \in L_{2}$ then $a w \in L_{2}$
$-w \in L_{2}$ then $w b \in L_{2}$

Well Formed Fomulae

- Basis Step
- T, F, and s, where is a propositional variable are in WFF
- Recursive Step
- If E and F are in WFF then $(\neg E)$, $(E \wedge F)$, $(E \vee F),(E \rightarrow F)$ and $(E \leftrightarrow F)$ are in WFF

Tree definitions

- A single vertex r is a tree with root r.
- Let $t_{1}, t_{2}, \ldots, t_{n}$ be trees with roots r_{1}, r_{2}, \ldots, r_{n} respectively, and let r be a vertex. A new tree with root r is formed by adding edges from r to r_{1}, \ldots, r_{n}.

Extended Binary Trees

- The empty tree is a binary tree.
- Let r be a node, and T_{1} and T_{2} binary trees. A binary tree can be formed with T_{1} as the left subtree and T_{2} as the right subtree. If T_{1} is non-empty, there is an edge from the root of T_{1} to r. Similarly, if T_{2} is non-empty, there is an edge from the root of T_{2} to r.

Full binary trees

- The vertex r is a FBT.
- If r is a vertex, T_{1} a FBT with root r_{1} and T_{2} a FBT with root r_{2} then a FBT can be formed with root r and left subtree T_{1} and right subtree T_{2} with edges $r \rightarrow r_{1}$ and $r \rightarrow r_{2}$.

Simplifying notation

- $\left(\bullet, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)$, tree with left subtree T_{1} and right subtree T_{2}
- ε is the empty tree
- Extended Binary Trees (EBT)
$-\varepsilon \in E B T$
- if $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \mathrm{EBT}$, then $\left(\bullet, \mathrm{T}_{1}, \mathrm{~T}_{2}\right) \in$ EBT
- Full Binary Trees (FBT)
- • \in FBT
- if $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \mathrm{FB}$, then $\left(\bullet, \mathrm{T}_{1}, \mathrm{~T}_{2}\right) \in \mathrm{FBT}$

Recursive Functions on Trees

- $N(T)$ - number of vertices of T
- $\mathrm{N}(\varepsilon)=0 ; \mathrm{N}(\bullet)=1$
- $\mathrm{N}\left(\cdot, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)=1+\mathrm{N}\left(\mathrm{T}_{1}\right)+\mathrm{N}\left(\mathrm{T}_{2}\right)$
- $\mathrm{Ht}(\mathrm{T})$ - height of T
- $\mathrm{Ht}(\varepsilon)=0 ; \mathrm{Ht}(\bullet)=1$
- $\mathrm{Ht}\left(\bullet, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)=1+\max \left(\mathrm{Ht}\left(\mathrm{T}_{1}\right), \mathrm{Ht}\left(\mathrm{T}_{2}\right)\right)$

NOTE: Height definition differs from the text
Base case $\mathrm{H}(\cdot)=0$ used in text

More tree definitions: Fully balanced binary trees

- ε is a FBBT.
- if T_{1} and T_{2} are FBBTs, with $\mathrm{Ht}\left(\mathrm{T}_{1}\right)=$ $\mathrm{Ht}\left(\mathrm{T}_{2}\right)$, then $\left(\bullet, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is a FBBT.

And more trees: Almost balanced trees

- ε is a ABT.
- if T_{1} and T_{2} are ABTs with $H t\left(T_{1}\right)-1 \leq H t\left(T_{2}\right) \leq H t\left(T_{1}\right)+1$
then $\left(\bullet, T_{1}, T_{2}\right)$ is a $A B T$.

Structural Induction

- Show P holds for all basis elements of S.
- Show that P holds for elements used to construct a new element of S, then P holds for the new elements.

Prove all elements of S are divisible by 3

- Basis: $6 \in \mathrm{~S} ; 15 \in \mathrm{~S}$;
- Recursive: if $x, y \in S$, then $x+y \in S$;

Prove that WFFs have the same number of left parentheses as right parentheses

