CSE 321 Discrete Structures

Winter 2008 Lecture 14 Recursive Definitions and Structural Induction

Announcements

- Readings

 This week:
 - 6th edition: 4.3, 4.4, 5.1, 5.2
 - 5th edition: 3.4, 3.5, 4.1, 4.2
- Midterm:
 - Mean 67, Median 68

81+	4
71-80	10
61-70	16
51-60	7
0-50	1

Induction Example (revisited)

- Given a set S of n+1 positive integers, none exceeding 2n, show that S is divisible.
- · Paul Beame's proof
 - Let $S \subseteq \, \{1, \, ..., \, 2n\}$ be non-divisible
 - Every element in S can be written as $m2^{i}\,\mbox{where}\,m$ is odd
 - We cannot have $m2^i \, \text{and} \, m2^j$ both in S
 - Hence $|S| \le n$

Highlights from Lecture 14

- Recursive Definitions

 F(0) = 1; F(n+1) = 2*F(n)
 - $-f_0 = 0; f_1 = 1; f_n = f_{n-1} + f_{n-2}$

Recursive Definitions of Sets

- Recursive definition
 - Basis step: $0 \in S$
 - Recursive step: if $x \in S,$ then $x + 2 \in S$
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

```
\begin{array}{l} \text{Basis:} \; [1, \; 1, \; 0] \in S, \; [0, \; 1, \; 1] \in S; \\ \text{Recursive:} \\ \quad \text{if } [x, \; y, \; z] \in S, \; \; \alpha \; \text{in } \; R, \; \text{then } [\alpha \; x, \; \alpha \; y, \; \alpha \; z] \in S \\ \quad \text{if } [x_1, \; y_1, \; z_1], \; [x_2, \; y_2, \; z_2] \in S \\ \quad \text{then } [x_1 + x_2, \; y_1 + y_2, \; z_1 + z_2] \end{array}
```

Powers of 3

Strings

- The set Σ^{\star} of strings over the alphabet Σ is defined
 - Basis: $\lambda \in S \ (\lambda \text{ is the empty string})$
 - Recursive: if w $\in \Sigma^{\star},$ x $\in \Sigma,$ then wx $\in \Sigma^{\star}$

Families of strings over $\Sigma = \{a, b\}$

- L_1 - $\lambda \in L_1$ - $w \in L_1$ then $awb \in L_1$
- L_2 $-\lambda \in L_2$ $-w \in L_2$ then $aw \in L_2$ $-w \in L_2$ then $wb \in L_2$

Function definitions

 $\begin{array}{l} \text{Concat}(w,\,\lambda) = w \text{ for } w \in \Sigma^* \\ \text{Concat}(w_1,w_2x) = \text{Concat}(w_1,w_2)x \text{ for } w_1,\,w_2 \text{ in } \Sigma^*,\,x \in \Sigma \end{array}$

Well Formed Fomulae

- · Basis Step
 - T, F, and s, where is a propositional variable are in WFF
- Recursive Step – If E and F are in WFF then (\neg E), (E \land F), (E \lor F), (E \rightarrow F) and (E \leftrightarrow F) are in WFF

Tree definitions

- A single vertex r is a tree with root r.
- Let $t_1, t_2, ..., t_n$ be trees with roots $r_1, r_2, ..., r_n$ respectively, and let r be a vertex. A new tree with root r is formed by adding edges from r to $r_1, ..., r_n$.

Extended Binary Trees

- The empty tree is a binary tree.
- Let r be a node, and T_1 and T_2 binary trees. A binary tree can be formed with T_1 as the left subtree and T_2 as the right subtree. If T_1 is non-empty, there is an edge from the root of T_1 to r. Similarly, if T_2 is non-empty, there is an edge from the root of T_2 to r.

Full binary trees

- The vertex r is a FBT.
- If r is a vertex, T₁ a FBT with root r₁ and T₂ a FBT with root r₂ then a FBT can be formed with root r and left subtree T₁ and right subtree T₂ with edges r \rightarrow r₁ and r \rightarrow r₂.

Simplifying notation

- (•, T_1 , T_2), tree with left subtree T_1 and right subtree T_2
- ε is the empty treeExtended Binary Trees (EBT)
- ε ∈ EBT - if T₁, T₂ ∈ EBT, then (•, T₁, T₂) ∈ EBT
- Full Binary Trees (FBT)
- • ∈ FBT - if T_1 , T_2 ∈ FBT, then (•, T_1 , T_2) ∈ FBT

• $Ht(\bullet, T_1, T_2) = 1 + max(Ht(T_1), Ht(T_2))$

NOTE: Height definition differs from the text Base case $H(\bullet) = 0$ used in text

More tree definitions: Fully balanced binary trees

- ϵ is a FBBT.
- if T_1 and T_2 are FBBTs, with Ht(T_1) = Ht(T_2), then (•, T_1 , T_2) is a FBBT.

And more trees: Almost balanced trees

- ϵ is a ABT.
- if T_1 and T_2 are ABTs with Ht(T_1) -1 \leq Ht(T_2) \leq Ht(T_1)+1 then (•, T_1 , T_2) is a ABT.

Show P holds for all basis elements of S. Show that P holds for elements used to construct a new element of S, then P holds for the new elements.

Prove all elements of S are divisible by 3

- Basis: $6 \in S$; $15 \in S$;
- Recursive: if $x, y \in S$, then $x + y \in S$;

Prove that WFFs have the same number of left parentheses as right parentheses