

Announcements

- Readings
- Monday
- Recursion
-4.3 ($5^{\text {th }}$ Edition: 3.4)
- Midterm:
- Friday, February 8
- In class, closed book
- Estimated grading weight:
- MT 12.5\%, HW 50%, Final 37.5%
- Extra Office Hour
- Thursday, 5:30-6:20 pm, CSE 582
- Homework 5 is available

Highlights from Lecture 12

- Mathematical Induction
-P(0)
$-\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
$-\therefore \forall \mathrm{nP}(\mathrm{n})$
- Strong Induction
-P(0)
$-\forall k((P(0) \wedge P(1) \wedge \ldots \wedge P(k)) \rightarrow P(k+1))$
$-\therefore \forall \mathrm{nP}(\mathrm{n})$

Induction Example

- A set of S integers is non-divisible if there is no pair of integers a, b in S where a divides b. If there is a pair of integers a, b in S, where a divides b, then S is divisible.
- Given a set S of $n+1$ positive integers, none exceeding $2 n$, show that S is divisible.
- What is the largest subset non-divisible subset of $\{1,2,3,4,5,6,7,8,9,10\}$.

If S is a set of $n+1$ positive integers, none exceeding 2 n , then S is divisible

- Base case: $\mathrm{n}=1$
- Suppose the result holds for n
- If S is a set of $n+1$ positive integers, none exceeding $2 n$, then S is divisible
- Let T be a set of $n+2$ positive integers, none exceeding $2 n+2$. Suppose T is non-divisible.

Proof by contradiction

- Claim: $2 \mathrm{n}+1 \in \mathrm{~T}$ and $2 \mathrm{n}+2 \in \mathrm{~T}$
- Claim: $\mathrm{n}+1 \notin \mathrm{~T}$
- Let $T^{*}=T-\{2 n+1,2 n+2\} \cup\{n+1\}$
- If T is non-divisible, T^{*} is also non-divisible

Recursive Definitions

- $F(0)=0 ; F(n+1)=F(n)+1$;
- $F(0)=1 ; F(n+1)=2 \times F(n) ;$
- $F(0)=1 ; F(n+1)=2^{F(n)}$

Bounding the Fibonacci Numbers

- Theorem: $2^{n / 2} \leq f_{n} \leq 2^{n}$ for $n \geq 6$

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis: $[1,1,0] \in S,[0,1,1] \in S$;
Recursive:

$$
\begin{aligned}
& \text { if }[x, y, z] \in S, \alpha \text { in } R \text {, then }[\alpha x, \alpha y, \alpha z] \in S \\
& \text { if }\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S \\
& \quad \text { then }\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right]
\end{aligned}
$$

Powers of 3

Fibonacci Numbers

- $\mathrm{f}_{0}=0 ; \mathrm{f}_{1}=1 ; \mathrm{f}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2}$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Strings

- The set Σ^{*} of strings over the alphabet Σ is defined
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

Function definitions

$\operatorname{Len}(\lambda)=0 ;$
$\operatorname{Len}(w x)=1+\operatorname{Len}(w) ;$ for $w \in \Sigma^{*}, x \in \Sigma$

Concat $(w, \lambda)=w$ for $w \in \Sigma^{*}$
Concat $\left(\mathrm{w}_{1}, \mathrm{w}_{2} \mathrm{x}\right)=\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \mathrm{x}$ for $\mathrm{w}_{1}, \mathrm{w}_{2}$ in $\Sigma^{\star}, \mathrm{x} \in \Sigma$

