

Announcements

- Readings
- Today:
- Modular Exponentiation
- 3.5, 3.6 (5 ${ }^{\text {th }}$ Edition: 2.5)
- Wednesday:
- Primality
$-3.6\left(5^{\text {th }}\right.$ Edition: 2.5)
- Friday:
- Applications of Number Theory
-3.7 ($5^{\text {th }}$ Edition: 2.6)

Highlights from Lecture 9

- Modular Exponentiation
$-a^{p-1} \equiv 1(\bmod p)$ for p prime
$-a^{k} \bmod n$ can be computed in $O(\log k)$ time

Big number arithmetic

- Computer Arithmetic 32 bit (or 64 bit, or 128 bit)
- Arbitrary precision arithmetic
- Store number in arrays or linked lists
- Runtimes for standard algorithms for n digit numbers
- Addition:
- Multiplication:

Discrete Log Problem

- Given integers a, b in $[1, \ldots, p-1]$, find k such that $a^{k} \bmod p=b$

Primality

- An integer p is prime if its only divisors are 1 and p
- An integer that is greater than 1 , and not prime is called composite
- Fundamental theorem of arithmetic:
- Every positive integer greater than one has a unique prime factorization

Factorization

- If n is composite, it has a factor of size at most sqrt(n)

Euclid's theorem

- There are an infinite number of primes.
- Proof by contradiction:
- Suppose there are a finite number of primes: $p_{1}, p_{2}, \ldots p_{n}$

Distribution of Primes

23571113171923293137414347535961677173798389 97101103107109113127131137139149151157163167173 179181191193197199211223227229233239241251257263 269271277281283293307311313317331337347349353359

- If you pick a random number n in the range $[x, 2 x]$, what is the chance that n is prime?

Famous Algorithmic Problems

- Primality Testing:
- Given an integer n, determine if n is prime
- Factoring
- Given an integer n , determine the prime factorization of n

Primality Testing

- Is the following 200 digit number prime:

409924084160960281797612325325875254029092850990862201334 039205254095520835286062154399159482608757188937978247351 186211381925694908400980611330666502556080656092539012888 01302035441884878187944219033

Showing a number is NOT prime

- Trial division by small primes
- Fermat's little theorem
$-a^{p-1} \bmod p=1$ if p is prime
- Miller's Test
- if p is prime, the only square roots of one are 1 and -1
- if p is composite other numbers can be the square root of one
- repeated squaring used to find a non-trivial square root of one from a starting value b

Probabilistic Primality Testing

- Conduct Miller's test for a random b
- If p is prime, it always passes the test
- If p is not prime, it fails with probability $3 / 4$
- Primality testing
- Choose 100 random b's and perform Miller's test on each
- If any say false, answer "Composite"
- If all say true, answer "Prime"

