

Announcements

- Readings
- Today:
- 3.4 (5 ${ }^{\text {th }}$ Edition: 2.4)
- Monday and Wednesday:
- 3.5, 3.6, 3.7 (5th Edition: 2.5, 2.6)

Highlights from Lecture 7

- Set Theory and ties to Logic
- Review of terminology:
- Complement, Universe of Discourse, Cartesian Product, Cardinality, Power Set, Empty Set, N, Z, Z ${ }^{+}$, Q, R, Subset, Proper Subset, Venn Diagram, Set Difference,
Symmetric Difference, De Morgan's Laws, Distributive Laws

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

What are the values computed?

```
public void Test1() {
    byte x=250;
    byte y =20;
    byte z = (byte) (x + y);
    Console.WriteLine(z);
```

\}

```
public void Test2() {
    sbyte x = 120;
    sbyte y =20;
    sbyte z = (sbyte) (x + y);
    Console.WriteLine(z);
}
```


Arithmetic mod 7

- $\mathrm{a}+{ }_{7} \mathrm{~b}=(\mathrm{a}+\mathrm{b}) \bmod 7$
- $a \times_{7} b=(a \times b) \bmod 7$

+	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

$$
\begin{array}{|c|l|l|l|l|l|l|l|}
\hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & & & & & & & \\
\hline 1 & & & & & & & \\
\hline 2 & & & & & & & \\
\hline 3 & & & & & & & \\
\hline 4 & & & & & & & \\
\hline 5 & & & & & & & \\
\hline 6 & & & & & & & \\
\hline
\end{array}
$$

Group Theory

- A group $\mathrm{G}=(\mathrm{S}, \bullet)$ is a set S with a binary operator • that is "well behaved":
- Closed under •
- Associative: $\mathrm{a} \bullet(\mathrm{b} \bullet \mathrm{c})=(\mathrm{a} \bullet \mathrm{b}) \bullet \mathrm{c}$
- Has an identity
- Each element has an inverse
- A group is commutative if the \bullet operator also satisfies $a \bullet b=b \bullet a$

Groups, mod 7

- $\{0,1,2,3,4,5,6\}$ is a group under ${ }_{7}$
- $\{1,2,3,4,5,6\}$ is a group under \times_{7}

Multiplicative Inverses

- Euclid's theorem: if x and y are relatively prime, then there exists integers s, t, such that:

$$
s x+t y=1
$$

- Prove $a \in\{1,2,3,4,5,6\}$ has a multiplicative inverse under \times_{7}

Generalizations

- ($\{0, \ldots, n-1\},{ }_{n}$) forms a group for all positive integers n
- ($\{1, \ldots, n-1\}, \times_{n}$) is a group if and only if n is prime

Basic applications

- Hashing: store keys in a large domain $0 . . \mathrm{M}-1$ in a much smaller domain $0 . . . \mathrm{n}-1$

Simple cipher

- Caesar cipher, $a=1, b=2, \ldots$ - HELLO WORLD
- Shift cipher
$-f(p)=(p+k) \bmod 26$
$-f^{-1}(p)=(p-k) \bmod 26$
- $f(p)=(a p+b) \bmod 26$

