CSE 321 Discrete Structures

Winter 2008
Lecture 7
Set Theory and Operations

Announcements

- Reading for this week
- Today: 2.1, 2.2 ($5^{\text {th }}$ Edition: 1.6, 1.7)
- Thursday: 2.3 (5 ${ }^{\text {th }}$ Edition: 1.8)
- Friday: 3.4, 3.5 ($5^{\text {th }}$ Edition: 2.4, 2.5)
- Homework 3
- Due Wednesday, January 30
- Note: problems are not necessarily of the same degree of difficulty

Highlights from Lecture 6

- Direct Proofs
- Chomp!
- Challenges
- Develop optimal strategy for 6×8 Chomp!
- Create a Chomp! program that uses an optimal algorithm
- Generalizations of Chomp!

Set Theory

- Formal treatment dates from late $19^{\text {th }}$ century
- Direct ties between set theory and logic
- Important foundational language

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Empty Set and Power Set

Cartesian Product : $\mathrm{A} \times \mathrm{B}$

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Set operations

$A \cup B=\{x \mid x \in A \vee x \in B\}$
$A \cap B=\{x \mid x \in A \wedge x \in B\}$
$\mathrm{A}-\mathrm{B}=\{x \mid x \in \mathrm{~A} \wedge x \notin \mathrm{~B}\}$
$A \oplus B=\{x \mid x \in A \oplus x \in B\}$
$\overline{\mathrm{A}}=\{x \mid x \notin \mathrm{~A}\}$

De Morgan's Laws

$\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cap \overline{\mathrm{B}}$
$\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

Distributive Laws

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Russell's Paradox

$$
S=\{x \mid x \notin x\}
$$

