

Announcements

- Reading for this week
- Today: 1.6, 1.7
- Homework 2
- Due Wednesday, January 23
- Martin Luther King Jr. Day, Mon., Jan 21
- $\forall \mathrm{x}$ (UniversityHoliday $(\mathrm{x}) \rightarrow$ NoClass(x))
- UniversityHoliday(Monday)

Highlights from Lecture 5

- Formal Reasoning
- Build a proof, starting from hypotheses by applying rules of inference

Direct Proof

- If n is odd, then n^{2} is odd

Definition

n is even if $n=2 k$ for some integer k
n is odd if $n=2 k+1$ for some integer k

Direct Proof
- If n is odd, then n^{2} is odd
Definition n is even if $n=2 k$ for some integer k n is odd if $n=2 k+1$ for some integer k

Proofs

- Proof methods
- Direct proof
- Contrapositive proof
- Proof by contradiction
- Proof by equivalence

Contrapositive

- Sometimes it is easier to prove $\neg q \rightarrow \neg p$ than it is to prove $p \rightarrow q$
- Prove that if $n \leq a b$ then $a \leq n^{1 / 2}$ or $b \leq n^{1 / 2}$

Proof by contradiction

- Suppose we want to prove p is true.
- Assume p is false, and derive a contradiction

Theorem: The first player can

 always win in an $n \times m$ game- Every position is a forced win for player A or player B (this fact will be used without proof)
- Any finite length, deterministic game with no ties is a win for player A or player B under optimal play

Equivalence Proof

- To show $p_{1} \leftrightarrow p_{2} \leftrightarrow p_{3}$, we show $p_{1} \rightarrow p_{2}$, $p_{2} \rightarrow p_{3}$, and $p_{3} \rightarrow p_{1}$
- Show that the following are equivalent
$-p_{1}: n$ is even
$-p_{2}: n-1$ is odd
$-p_{3}: n^{2}$ is even

Contradiction example

- Show that at least four of any 22 days must fall on the same day of the week

The Game of Chomp

- Consider taking the lower right cell
- If this is a forced win for A , then done
- Otherwise, B has a move m that is a forced win for B, so if A started with this move, A would have a forced win

Proof

Tiling problems

8×8 Checkerboard with one corner removed

- Can an 8×8 checkerboard with one corner removed be tiled with 3×1 tiles?

8×8 Checkerboard with two corners removed

- Can an 8×8 checkerboard with upper left and lower right corners removed be tiled with 2×1 tiles?
\square

