CSE 321 Discrete Structures

Winter 2008 Lecture 6 Proofs

Announcements

- Reading for this week - Today: 1.6, 1.7
- Homework 2 – Due Wednesday, January 23
- Martin Luther King Jr. Day, Mon., Jan 21
 - \forall x (UniversityHoliday(x) → NoClass(x))
 - UniversityHoliday(Monday)

Highlights from Lecture 5

- Formal Reasoning
- Build a proof, starting from hypotheses by applying rules of inference

Proofs

- Proof methods
 - Direct proof
 - Contrapositive proof
 - Proof by contradiction
 - Proof by equivalence

Direct Proof

• If *n* is odd, then n^2 is odd

Contrapositive

- Sometimes it is easier to prove $\neg q \rightarrow \neg p$ than it is to prove $p \rightarrow q$
- Prove that if $n \le ab$ then $a \le n^{1/2}$ or $b \le n^{1/2}$

Definition *n* is even if n = 2k for some integer *k n* is odd if n = 2k+1 for some integer *k*

Proof by contradiction

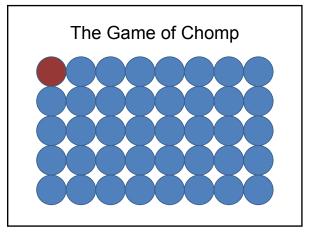
- Suppose we want to prove *p* is true.
- Assume *p* is false, and derive a contradiction

Contradiction example

• Show that at least four of any 22 days must fall on the same day of the week

Equivalence Proof

- To show $p_1 \leftrightarrow p_2 \leftrightarrow p_3$, we show $p_1 \rightarrow p_2$, $p_2 \rightarrow p_3$, and $p_3 \rightarrow p_1$
- Show that the following are equivalent
 p₁: n is even
 - $-p_2$: *n*-1 is odd
 - $-p_3$: n^2 is even



Theorem: The first player can always win in an $n \times m$ game

- Every position is a forced win for player A or player B (this fact will be used without proof)
- Any finite length, deterministic game with no ties is a win for player A or player B under optimal play

