CSE 321 Discrete Structures

Winter 2008
Lecture 4
Predicate Calculus

Announcements

* Reading for this week
—Today: 1.3,1.4
— Wednesday/Friday: 1.5, 1.6

Highlights from Lecture 3

* Introduction of predicates
— Functions with range {T, F}
* Quantifiers
—V x P(x) : P(x) is true for every x in the domain

—3 x P(x) : There is an x in the domain for
which P(x) is true

Statements with quantifiers
* V x 3 y Greater (y, x)
For every number there is some number that is greater than it
* 3y V xGreater (y, x)
* V x 3 y (Greater(y, x) A Prime(y))
* V x (Prime(x) — (Equal(x, 2) v Odd(x))

* 3 x 3 y(Equal(x, y + 2) A Prime(x) A Prime(y))

Domain: Greater(a, b) ="a>b”
Positive Integers

Statements with quantifiers

Domain: Even(x)
Positive Integers Odd(x)
Prime(x)

Greater(x,y)
Equal(x,y)

* “There is an odd prime”

+ “If x is greater than two, x is not an even prime”
* VxVyVz ((Equal(z, x+y) A Odd(x) A Odd(y))— Even(z))

* “There exists an odd integer that is the sum of two
primes”

Goldbach’s Conjecture

» Every even integer greater than two can
be expressed as the sum of two primes

Even(x)
Odd(x)
Prime(x)
Greater(x,y)
Equal(x,y)

Domain:
Positive Integers




Systems vulnerability
Reasoning about machine status

» Specify systems state

and policy with logic
— Formal domain

* reasoning about security

« automatic
implementation of
policies

* Domains

— Machines in the
organization

— Operating Systems
— Versions

— Vulnerabilities

— Security warnings

* Predicates
— RunsOS(M, O)
— Vulnerable(M)
— OSVersion(M, Ve)
— LaterVersion(Ve, Ve)
— Unpatched(M)

System vulnerability statements

» Unpatched machines are vulnerable
» There is an unpatched Linux machine

« All Windows machines have versions later
than SP1

Prolog

 Logic programming language

* Facts and Rules

RunsOS (SlipperPC, Windows)

RunsOS (SlipperTablet, Windows)

RunsOS (Carmellaptop, Linux)

OSVersion (SlipperPC, SP2)
OsVersion (SlipperTablet, SP1)
OSVersion (Carmellaptop, Ver3)

LaterVersion (SP2, SP1)
LaterVersion (Ver3, Ver2)
LaterVersion (Ver2, Verl)

Later(x, y) :-
Later(x, z), Later(z, y)

NotlLater(x, y) :- Later(y, x)
Notlater(x, y) :-
SameVersion(x, y)

MachineVulnerable (m) :-
OSVersion(m, v),
VersionVulnerable (v)

VersionVulnerable (v) :-
CriticalVulnerability (x),
Version(x, n),
NotLater (v, n)

Nested Quantifiers

« lteration over multiple variables
* Nested loops
* Details
— Use distinct variables
+ Vx@Ey(Pxy) >V xQ(y, X))
— Variable name doesn’t matter
« Vx3yP(x,y)=Va3ibP(a,b)

— Positions of quantifiers can change (but order is
important)

c VX (QX) AT xP(X,y) =V x3y(Q(x) A P(X,y))

Quantification with two variables

Expression |When true

When false

VvV xVyP(xy)

Ix 3y P(x,y)

v x3yP(xy)

FyVxP(Xx,y)




