CSE 321 Discrete Structures

Winter 2008
Lecture 3 Propositional Proofs

Announcements

- Reading for Monday: 1.3
- Signup for the mailing list
- See course website for details
- Office hours
- Richard Anderson, CSE 582, Friday 2:303:30
- Natalie Linnell, CSE 218, Monday, 11:0012:00, Tuesday, 2:00-3:00

Highlights from Lecture 2

- Tautology: A compound proposition that is always true.
- P is equivalent to $Q(P \equiv Q): P \leftrightarrow Q$ is a tautology
- Truth table algorithm for testing equivalence
- DeMorgan's laws
$-\neg(p \vee q) \equiv$ \qquad
$-\neg(p \wedge q) \equiv$ \qquad

Logical Proofs

- To show P is equivalent to Q
- Apply a series of logical equivalences to subexpressions to convert P to Q
- To show P is a tautology
- Apply a series of logical equivalences to subexpressions to convert P to \mathbf{T}

Equivalences relating to implication

- $p \rightarrow q \equiv \neg p \vee q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \vee q \equiv \neg p \rightarrow q$
- $p \wedge q \equiv \neg(p \rightarrow \neg q)$
- $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
- $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- $p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q)$
- $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Why bother with logical proofs when we have truth tables?

Show $(p \wedge q) \rightarrow(p \vee q)$ is a tautology

Show $(p \rightarrow q) \rightarrow r$ and $p \rightarrow(q \rightarrow r)$ are not equivalent

Predicate Calculus

- Predicate or Propositional Function
- A function that returns a truth value
- " x is a cat"
- " x is prime"
- "student x has taken course y "
- " $x>y$ "
- " $x+y=z$ "

Quantifiers

- $\forall x P(x): P(x)$ is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which $P(x)$ is true

Statements with quantifiers

- $\exists x \operatorname{Even}(x)$
- $\forall x \operatorname{Odd}(x)$
- $\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
- $\forall x$ Greater $(x+1, x)$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

Statements with quantifiers

- $\forall x \exists y$ Greater (y, x)
- $\forall x \exists y \operatorname{Greater}(x, y)$
- $\forall x \exists y(\operatorname{Greater}(y, x) \wedge \operatorname{Prime}(y))$
- $\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x))$
- $\exists x \exists y(\operatorname{Equal}(x, y+2) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Goldbach's Conjecture

- Every even integer greater than two can be expressed as the sum of two primes

