CSE 321 Discrete Structures

Winter 2008 Lecture 2 Propositional Equivalences

Announcements

- Homework 1, Due January 16th
- Reading: sections 1.1, 1.2, 1.3
- Quiz section Thursday
 - 12:30-1:20 or 1:30 2:20
 - CSE 305
- · Office hours
 - Richard Anderson, CSE 582, Friday 2:30-3:30
 - Natalie Linnell, CSE 218, Monday, 11:00-12:00, Tuesday, 2:00-3:00

Biconditional $p \leftrightarrow q$

- *p* iff *q*
- p is equivalent to q
- p implies q and q implies p

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - q: you can ride the roller coaster
 - r: you are under 4 feet tall
 - s: you are older than 16

Logical Equivalence

- *p* and *q* are Logically Equivalent if *p*↔ *q* is a tautology.
- The notation *p* = *q* denotes *p* and *q* are logically equivalent
- Example: $(p \rightarrow q) \equiv (\neg p \lor q)$

р	q	$p \rightarrow q$	<i>¬ p</i>	$\neg p \lor q$	$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

Computing equivalence

- Describe an algorithm for computing if two logical expressions are equivalent
- What is the run time of the algorithm?

Understanding connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
 - Simplification
 - Testing for equivalence
- Applications
 - Query optimization
 - Search optimization and caching
 - Artificial Intelligence
 - Program verification

Properties of logical connectives

- Identity
- Domination
- Idempotent
- · Commutative
- Associative
- Distributive
- Absorption
- Negation

De Morgan's Laws

- \neg (p \lor q) \equiv \neg p \land \neg q
- \neg (p \land q) \equiv \neg p \lor \neg q
- What are the negations of:
 - Casey has a laptop and Jena has an iPod
 - Clinton will win Iowa or New Hampshire

Equivalences relating to implication

- $p \rightarrow q \equiv \neg p \lor q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \lor q \equiv \neg p \rightarrow q$
- $p \land q \equiv \neg (p \rightarrow \neg q)$
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
- \neg (p \leftrightarrow q) = p \leftrightarrow \neg q

Logical Proofs

- To show P is equivalent to Q

 Apply a series of logical equivalences to subexpressions to convert P to Q
- To show P is a tautology

 Apply a series of logical equivalences to subexpressions to convert P to T

Show $(p \land q) \rightarrow (p \lor q)$ is a tautology

Show $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not equivalent