CSE 321 Discrete Structures

Winter 2008
Lecture 1
Propositional Logic

Why this material is important

- Language and formalism for expressing ideas in computing
- Fundamental tasks in computing
- Translating imprecise specification into a working system
- Getting the details right

About the course

- From the CSE catalog:
- CSE 321 Discrete Structures (4)

Fundamentals of set theory, graph theory, enumeration, and algebraic structures, with applications in computing. Prerequisite: CSE 143; either MATH 126, MATH 129, or MATH 136.

- What I think the course is about:
- Foundational structures for the practice of computer science and engineering

Topic List

- Logic/boolean algebra: hardware design, testing, artificial intelligence, software engineering
- Mathematical reasoning/induction: algorithm design, programming languages
- Number theory/probability: cryptography, security, algorithm design, machine learning
- Relations/relational algebra: databases
- Graph theory: networking, social networks, optimization

Administration	
- Instructor - Richard Anderson - Teaching Assistant - Natalie Linnell - Quiz section - Thursday, 12:30-1:20, or 1:30-2:20 - CSE 305 - Recorded Lectures - Available on line - Text: Rosen, Discrete Mathematics - $6^{\text {th }}$ Edition preferred - $5^{\text {th }}$ Edition okay	- Homework - Due Wednesdays (starting Jan 16) - Exams - Midterms, Feb 8 - Final, March 17, 2:30-4:20 pm - All course information posted on the web - Sign up for the course mailing list

Propositions

- A statement that has a truth value
- Which of the following are propositions?
- The Washington State flag is red
- It snowed in Whistler, BC on January 4, 2008.
- Hillary Clinton won the democratic caucus in lowa
- Space aliens landed in Roswell, New Mexico
- Ron Paul would be a great presiden
- Turn your homework in on Wednesday
- Why are we taking this class?
- If n is an integer greater than two, then the equation $\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}=\mathrm{c}^{\mathrm{n}}$ has no
solutions in non-zero integers a, b, and c .
- Every even integer greater than two can be written as the sum of two primes
- This statement is false
- Propositional variables: p, q, r, s,
- Truth values: \mathbf{T} for true, \mathbf{F} for false

Compound Propositions

- Negation (not)
- Conjunction (and)
- Disjunction (or)
- Exclusive or
- Implication
- Biconditional
$\neg \mathrm{p}$
$p \wedge q$
$p \vee q$
$p \oplus q$
$p \rightarrow q$
$p \leftrightarrow q$

Truth Tables

Understanding complex propositions with a truth table

Understanding complex propositions

- Either Harry finds the locket and Ron breaks his wand or Fred will not open a joke shop

Aside: Number of binary operators

- How many different binary operators are there on atomic propositions?

$$
p \rightarrow q
$$

If pigs can whistle then horses can fly

- Implication
$-p$ implies q
- whenever p is true q must be true
- if p then q
- q if p
$-p$ is sufficient for q
- p only if q

Converse, Contrapositive, Inverse

- Implication: $p \rightarrow q$
- Converse: $q \rightarrow p$
- Contrapositive: $\neg q \rightarrow \neg p$
- Inverse: $\neg p \rightarrow \neg q$
- Are these the same?

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
$-q$: you can ride the roller coaster
- r. you are under 4 feet tall
- s : you are older than 16

Biconditional $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

