Homework 9, Due Thursday, March 13, 2008

Problem 1:

Section 6.4, Problem 6. (5th edition: section 5.3, problem 6)

Problem 2:

Section 6.4, Problem 10. (5th edition: section 5.3, problem 10)

Problem 3:

Section 8.1, Problem 4. (5th edition: section 7.1, problem 4)
Problem 4:
Section 8.1, Problem 34 a , b, c, d. (5th edition: section 7.1 , problem $34 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$)
Problem 5:
Section 8.3, Problem 10 a, b, c. (5th edition: section 7.3 , problem 10 a, b, c)
Problem 6:
Section 8.3, Problem 14 a, c, e. (5th edition: section 7.3 , problem 14 a, c, e)

Problem 7:

For the relation $R=\{(b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on $\{a, b, c, d, e\}$, draw the following relations in directed graph form:
a) R
b) The symmetric closure of R
c) The transitive closure of R

Problem 8:

Let R be the relation on ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$. Show that R is an equivalence relation. (Note that this is a relation on a set of ordered pairs. Think of the ordered pairs as fractions: $\left(\frac{a}{b}, \frac{c}{d}\right) \in R$ if and only if $a d=b c$.)

Extra Credit 9:

For undirected simple graphs, prove that if G is disconnected, then \bar{G}, the complement of G, is connected. (\bar{G} is made up of the edges that are absent from G.)

Extra Credit 10:

Suppose that G is an unidrected graph and every vertex has degree at least d for some $d>2$. Prove that G must contain a (simple) cycle of length at least $d+1$.

