Problem 1:

Prove that $n!<n^{n}$ where n is an integer greater than 1 .

Problem 2:

Prove that 3 divides $n^{3}+2 n$ whenever n is a positive integer.

Problem 3:

Casting out nines: Prove that a number is divisible by 9 if and only if the sum of its digits is divisible by 9 . More specifically, for a positive integer a, let digitsum (a) be the sum of the decimal digits of a. Prove by induction on the number of decimal digits in a that $a \equiv \operatorname{digitsum}(a)(\bmod 9)$. Hint: Express a as $\sum_{i=0}^{n} a_{i} 10^{i}$ where $a_{i} \in\{0, \ldots, 9\}$.

Problem 4:

Use strong induction to show that a rectangular $2 n \times 2 m$ checkerboard with two squares missing, one white and one black, can be covered with dominoes.

Problem 5:

Section 4.3, Problem 12. (Fifth edition, Section 3.4, Problem 12.)

Extra Credit 6:

Section 4.1, Problem 51. (Fifth edition, Section 3.3, Problem 39)

