Homework 4, Due Wednesday, February 6, 2008

Problem 1:

Section 2.3 Problem 6 (Fifth edition, Section 1.8, Problem 6).

Problem 2:

Section 2.3 Problem 10 (Fifth edition, Section 1.8, Problem 10).

Problem 3:

Prove or disprove that if a, b, and c are positive integers and $a \mid b c$ than $a \mid b$ or $a \mid c$.

Problem 4:

Section 3.4 Problem 16 (Fifth edition, Section 2.4, Problem 36).

Problem 5:

How many zeros are there at the end of 100 !. Determine this without computing 100 !.

Problem 6:

Prove that if n is an odd positive integer, then $n^{2} \equiv 1(\bmod 8)$.

Problem 7:

For each $a \in\{1, \ldots, 10\}$ determine the smallest $k \geq 1$ such that $a^{k} \bmod 11=1$.

Problem 8:

Use Fermat's Little Theorem to compute $3^{302} \bmod 5,3^{302} \bmod 7$ and $3^{302} \bmod 11$.

Problem 9:

Prove that if p is prime, and $x^{2} \equiv 1(\bmod p)$ then $x \equiv 1(\bmod p)$ or $x \equiv(p-1)(\bmod p)$.

Extra Credit 10:

Let p be an odd prime. A number $a \in\{1, \ldots, p-1\}$ is a quadratic residue if the equation $x^{2} \equiv a(\bmod p)$ has a solution for x. Show that there are exactly $(p-1) / 2$ quadratic residues modulo p.

