University of Washington Department of Computer Science and Engineering CSE 321, Winter 2008

Homework 1, Due Wednesday, January 16, 2008

Problem 1:

Section 1.1, Exercise 10.

Problem 2:

Section 1.1, Exercise 16. (Fifth edition, 1.1, Exercise 14)

Problem 3:

Section 1.1, Exercise 20, a, c, e, g. (Fifth edition, 1.1, Exercise 18, a, c, e, g)

Problem 4:

Section 1.1, Exercise 34 (Fifth edition, 1.1, Exercise 30).

Problem 5:

The following two statements form the basis of the most important methods of theorem proving. Use truth tables to prove that they are tautologies.

- a) Resolution: $((p \lor q) \land (\neg q \lor r)) \to (p \lor r)$
- b) Modus ponens: $((p \land (p \to q)) \to q)$

Problem 6:

Show that Modus ponens is a tautology without using a truth table. Show each step and indicate which logical equivalences you use.

Problem 7:

Show that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.

Problem 8:

Define the NAND operator, denoted |, as follows (p | q) is true when either p or q, or both are false; and (p | q) is false when p and q are true.

- a) Show that the NAND operator is commutative.
- b) Show that the NAND operator is not associative.
- c) Give an expression that is equivalent to $p \rightarrow q$ that only uses the logical connective |.

Extra Credit 9:

Show that you can swap a pair of memory registers using exclusive-or without any temporary storage. To be precise, suppose that your machine has two memory registers R_1 and R_2 with the same number of bits. The instruction XOR_1 makes the assignment $R_1 \leftarrow R_1 \oplus R_2$ and the instruction XOR_2 makes the assignment $R_2 \leftarrow R_1 \oplus R_2$. Describe how you swap a pair of values and explain why your solution works.