Relations

Definition Let A and B be sets. A *binary relation* R from A to B is a subset of $A \times B$. (In this class, we will only concern ourselves with binary relations.)

Example:

Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$, then any subset of

$$A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z), (3, x), (3, y), (3, z), (4, x), (4, y), (4, z)\}$$

is a relation from A to B.

Let $a \in A$, $b \in B$, and R be a relation from A to B, then:

 $a \ R \ b$ denotes that $(a, b) \in R$. a is related to b.

 $a \not R b$ denotes that $(a, b) \notin R$

_

Definition A relation on the set A is a relation from A to A.

Example:

 $R = \{(x, y) \mid x < y\}$ is a relation on the set of integers if $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$.

Notice that relations need not be finite. The relation R above is infinite. There are an infinite number of tuples (x, y) such that x < y.

_

The following properties (reflexive, symmetric, antisymmetric, transitive) are used to classify relations on a set.

Definition A relation R on a set A is *reflexive* if $(a, a) \in R$ for every element $a \in A$. In other words, R is reflexive if $\forall a \in A((a, a) \in R)$.

Example:

Let $A = \{1, 2, 3, 4\}.$

Any relation on the set A that is reflexive must have the tuples (1,1), (2,2), (3,3), and (4,4). It can have other tuples, but to be reflexive, it must have those four tuples at the minimum.

Definition A relation R on the set A is symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$. In other words, $\forall a \forall b((a, b) \in R \rightarrow (b, a) \in R)$ for $a, b \in A$.

Example:

Let R be a relation on the set of integers.

 $R = \{(x, y) \mid x < y\} \text{ is not symmetric, because } (1, 2) \in R, \text{ but } (2, 1) \notin R.$ $R = \{(x, y) \mid x \neq y\} \text{ is symmetric, because for every } (x, y) \in R, (y, x) \text{ is also in } R.$

Definition A relation R on a set A is *antisymmetric* if it has the following property: For all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b. In other words, $\forall a \forall b (((a, b) \in R \land (b, a) \in R) \rightarrow a = b)$.

Example:

 $R = \{(x, y) \mid x < y\}$ is antisymmetric, because for every $(x, y) \in R$, (y, x) is NOT in R.

 $R = \{(x,y) \mid x \neq y\}$ is not antisymmetric, because $(1,2) \in R$, but so is (2,1), but $1 \neq 2$ (making the conclusion to the implication false).

Note: Even though the examples shown seem to indicate that being *symmetric* and *antisymmetric* are opposites. They are actually not opposites. One of your homework problems asks you to come up with a relation that is both and another that is neither.

_

Definition A relation R on a set A is *transitive* if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for all $a, b, c \in A$. In other words, $\forall a \forall b \forall c(((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R))$.

Example:

 $R = \{(x, y) \mid x < y\} \text{ is transitive, because if } x < y \text{ and } y < z, \text{ then } x < z \text{ and thus } (x, z) \in R.$ $R = \{(x, y) \mid x + y = 3\} \text{ is not transitive, because } (1, 2) \in R \text{ and } (2, 1) \in R, \text{ but } (1, 1) \notin R.$

As relations are sets, you can use any set operator to combine them.

Example:

Let $R_1 = \{(x, y) \mid x < y\}$ and $R_2 = \{(x, y) \mid x > y\}$. $R_1 \cup R_2 = \{(x, y) \mid x \neq y\}$ $R_1 \cap R_2 = \emptyset$ $R_1 - R_2 = R_1$ (R_1 and R_2 are disjoint, so subtracting R_2 from R_1 does nothing)

. 1

Definition Let R be a relation from a set A to a set B and S be a relation from B to a set C. The *composite* of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A, c \in C$ for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. The composite of R and S is denoted by $S \circ R$. In other words, $S \circ R = \{(a, c) \mid \exists b((a, b) \in R \land (b, c) \in S)\}.$

Example:

Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$ and $C = \{x, y, z, w\}$. Suppose $R = \{(1, a), (1, c), (2, b), (4, b), (4, c)\}$ and $S = \{(a, x), (a, w), (b, y), (b, z), (b, w), (c, w)\}$. Then $S \circ R = \{(1, x), (1, w), (2, y), (2, z), (2, w), (4, y), (4, z), (4, w)\}$.

You should notice the similarity between the definition of the composite of two relations and a relation being transitive. First, let's define the composite of relations on a set.

Definition Let R be a relation on a set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by:

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Theorem Let R be a relation on a set A. If $R^2 \subseteq R$, then R is transitive.

For a relation R to be transitive, that means that if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Proof: Note that $R^2 = R \circ R$. If $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, $(a, c) \in R^2$. Because $R^2 \subseteq R$, this means that $(a, c) \in R$. In other words, R is transitive!