CSE 321: Discrete Structures
Assignment \#4
Autumn 2008
Due: Wednesday, October 29

Problems:

1. Section 4.1, exercise 10
2. Section 4.1, exercise 30
3. Prove that 3 divides $n^{3}+2 n$ whenever n is a positive integer.
4. Section 4.1, exercise 66
5. Section 4.2, exercise 10
6. Section 4.2, exercise 12
7. Section 4.3, exercise 16
8. If Σ is an alphabet, for $x \in \Sigma^{*}$ we define the reversal of x recursively as follows:

- Basis: $\lambda^{R}=\lambda$ where λ is the empty string
- Recursive step: $(u a)^{R}=a u^{R}$ for $a \in \Sigma, u \in \Sigma^{*}$

Show using structural induction on $x \in \Sigma^{*}$ that if $w, x \in \Sigma^{*}$ are two strings in Σ^{*} then

$$
(w x)^{R}=x^{R} w^{R}
$$

Please write about how many hours it took you to complete this assignment near where you write your name on the first page.

