Problems:

1. Section 4.1, exercise 10 [5th edition: Section 3.3, exercise 6]
2. Section 4.1, exercise 30 [5th edition: Section 3.3, exercise 58]
3. Prove that 3 divides $n^{3}+2 n$ whenever n is a positive integer.
4. Section 4.1, exercise 66 [5th edition: nonexistent, see scan on web page]
5. Section 4.2, exercise 10 [5th edition: Section 3.3, exercise 34]
6. Section 4.2, exercise 12 [5th edition: nonexistent, see scan on web page]
7. Section 4.3, exercise 16 [5th edition: Section 3.4, exercise 16]
8. If Σ is an alphabet, for $x \in \Sigma^{*}$ we define the reversal of x recursively as follows:

- Basis: $\lambda^{R}=\lambda$ where λ is the empty string
- Recursive step: $(u a)^{R}=a u^{R}$ for $a \in \Sigma, u \in \Sigma^{*}$

Show using structural induction on $x \in \Sigma^{*}$ that if $w, x \in \Sigma^{*}$ are two strings in Σ^{*} then

$$
(w x)^{R}=x^{R} w^{R}
$$

