Problems:

1. Prove or disprove: $n^{2}+3 n+1$ is always prime for integer $n>0$.
2. Prove that if n is an integer then $n^{2} \bmod 8$ is either 0,1 , or 4 .

Hint: Consider the different cases of $n \bmod 4$.
3. Section 3.4, exercise 22 [5th edition: Section 2.4, exercise 44]
4. Compute the greatest common divisor for each of the following pairs of numbers.
(a) $2^{1} \cdot 3^{3} \cdot 5^{5}, 2^{2} \cdot 3^{3} \cdot 5^{2}$
(b) $100!, 127$
5. Use the Euclidean algortihm to find $\operatorname{gcd}(2274,174)$.
6. What is the rightmost digit (digit in the units place) of 32^{631} ? Show your work.
7. Prove that for any prime $p>3$, either $p \equiv 1(\bmod 6)$ or $p \equiv 5(\bmod 6)$.
8. Section 3.5, exercise 32 [5th edition: Section 2.4, exercise 46]
9. Find an inverse of 2 modulo 17 .
10. Optional: How many zeroes are there at the end of 100 !?

