CSE 321: Discrete Structures Assignment #2 Due: Friday, April 14

Reading Assignment: Rosen, 5th edition: Sections 1.3-1.8 pp. 233-236, 2.4-2.5.

Problems:

- 1. Let Q(x, y) be the statement "x has been a contestant on y". Express the following sentences in terms of Q(x, y), quantifiers and logical connectives, where the universe of discourse for x is the set of all students at your school and the universe of discourse for y is the set of all quiz shows on television. Then give the negation of the statement in English.
 - No student at your school has ever been a contestant on a television quiz show.
 - Every television quiz show has had a student from your school as a contestant.
- 2. Prove or disprove the claim that $\forall x(P(x) \to Q(x))$ is logically equivalent to $\forall x P(x) \to \forall x Q(x)$.
- 3. Let Q(A, B) be the statement $A \subseteq B$. If the universe of discourse for both A and B is all sets of integers, what are the truth values of the following? Justify your answers.
 - $(\forall A)(\exists B)Q(A,B)$
 - $(\forall B)(\exists A)Q(A,B)$
 - $(\exists A)(\forall B)Q(A,B)$
 - $(\forall A)(\forall B)Q(A,B)$
- 4. Section 1.5, Exercise 12.
- 5. Section 1.5, Exercise 22.

- 6. Prove that if you pick 10 numbers from 1 to 1000, there is a pair of numbers such that the larger of the two is at most twice the other.
- 7. Which of the following statements are true?
 - $\{x\} \subseteq \{x\}$
 - $\{x\} \in \{x, \{x\}\}$
 - $\{x\} \in \{x\}$
 - $\{x, \{x\}\} \subseteq \mathcal{P}(\{x\})$
- 8. Carefully prove the following implications.
 - $(A \cup B = B) \rightarrow (A \subseteq B)$
 - $(A \cap B = A) \to (A \subseteq B)$
- 9. Give an example of a function from \mathcal{N} to \mathcal{N} which is
 - one-to-one but not onto
 - onto but not one-to-one
 - both onto and one-to-one (but different from the identity function)
 - neither one-to-one nor onto.