
CSE 321

Solutions to Practice Problems

Instructions:

• Feel free NOT to multiply out binomial coefficients, factorials, etc, and feel free to
leave answers in the form of a sum.

• No calculators, books or notes are allowed.

1. True or False:

• p → q is logically equivalent to q → p.
False. Consider p = true and q = false, then p → q is false and q → p is true.

• ((p → q) ∧ ¬p) → ¬q is a tautology.
False. Consider p = false and q = true, then the above statement is false.

• ((∀x[P (x) → Q(x)]) ∧ P (y)) → Q(y) is a tautology.
True.

• There is a one-to-one function from A to B if and only if there exists an onto
function from B to A.
True. There is a one-to-one function form A to B only if |A| ≤ |B|, in which case
there is a on-to function from B to A.

• To prove by contradiction that p → q, one must show that p is false.
True. One must show assuming q is false that p is false, thus contradicting as-
sumption that p is true.

• Pr(A
⋃

B) ≤ Pr(A) + Pr(B).
True. Follows from Pr(A

⋃

B) ≤ Pr(A) + Pr(B) − Pr(A ∩ B)

• For any event A in a probability space 0 ≤ Pr(A) ≤ 1.
True.

• For any events A and B in a probability space Pr(A | B) = Pr(A).
False. It is true only if A and B are independent.

• An undirected graph has an even number of vertices of odd degree.
True. This is because the sum of the degrees of vertices of a graph = twice the
number of edges which is always an even number.

2. On the next set of questions, fill in the blanks.

• If a set A is contained in a set B, then A ∪ B = . . . . . . . . . . . . . B

• If a set A is contained in a set B, then A ∩ B = . . . . . . . . . . . . . A

• The number of subsets of an n element set is . . . . . . . . . . . . . 2n
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• The number of ways of choosing an unordered subset of size k out of a set of size
r is . . . . . . . . . . . . .

(

r
k

)

• The coefficient of x10 in the polynomial (5x + 1)100 is . . . . . . . . . . . . .
(

100
10

)

510

• The number of different binary relations from a set A of size n to a set B of size
m is . . . . . . . . . . . . . 2nm

• The number of different reflexive binary relations on a set A of size n is
. . . . . . . . . . . . . 2n2−n

• The number of different undirected graphs (no self loops and no parallel edges)

on n vertices is . . . . . . . . . . . . . 2
n(n−1)

2

• What is the coefficient of x7 in (10x + 2)21?
(

21
7

)

107214

• What is the probability of getting exactly 12 heads if a biased coin with probability
4/5 of coming up heads is tossed 25 times (independently)?

(

25
12

)

(4
5
)12(1

5
)13

3. • Every day, starting on day 0, one vampire arrives in Seattle from Transylvania
and, starting on the day after its arrival, bites one Seattlite every day. People
bitten become vampires themselves and live forever. New vampires also bite one
person each day starting the next day after they were bitten. Let Vn be the
number of vampires in Seattle on day n. So, for example, V0 = 1, V1 = 3 (one
that arrived from Transylvania on day 0, one that he bit on day 1, and another one
that arrived from Transylvania on day 1), V2 = 7 and so on. Write a recurrence
relation for Vn that is valid for any n ≥ 2.

Solution: If there are Vn−1 vampires on day n − 1, they bite Vn−1 on day n.
Further an additional vampire arrives from Transylvania on day n. Therefore the
total number of vampires on day n is given by

Vn = Vn−1 + Vn−1 + 1 = 2Vn−1 + 1

• Prove by induction on n that Vn ≤ 3n.

Solution: To prove Vn ≤ 3n by induction.
Base Case: For (n = 0), V0 = 1 ≤ 30.
I.H: For n = k, we know that Vk ≤ 3k.
To show for n = k + 1,

Vk+1 = 2 · Vk + 1

Using induction hypothesis, we get

Vk+1 = 2 · Vk + 1

≤ 2 · 3k + 1

≤ 2 · 3k + 3k

≤ 3k+1

Hence by principle of mathematical induction, we conclude that for all n, Vn ≤ 3n
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4. (25 points) Consider an exam consisting of 25 True/False questions. Suppose that
a student has probability 1/2 of getting the answer to a particular question right,
independently for all questions.

(a) In how many different ways can the student answer the questions?
Solution: 225. Since there are two choices for each question.

(b) What is the probability that the student answers the second question correctly
given that the student answers the first question correctly?
Solution:

1
2
. As the two choices are independent of each other.

(c) What is the probability that the student answers the first two questions correctly
given that the student answers at least one of the first two questions correctly?
Solution:

1
3
. Because, given that the student answers atleast one ques-

tion right, there are three possibilities (correct, incorrect) (incorrect, correct)
(correct, correct) all of which are equally likely.

(d) What is the expected number of answers the student gets right? Briefly explain
your answer.
Solution:Define indicator random variables X1 . . . X25, where the variable Xi is
1 if the student gets the ith question right, and 0 otherwise. The total number
of questions that student gets right is given by Y =

∑25
i=1 Xi. By linearity of

expectation we can write:

E[Y ] =
25

∑

i=1

E[Xi]

Further for any i,

E[Xi] =
1

2
· 1 +

1

2
· 0 =

1

2

Substituting the value of E[Xi] in the original equation, we get

E[Y ] = 25 ·
1

2
=

25

2

(e) What is the expected number of points the student gets on the exam if the student
gets 2 points for each question answered correctly and gets 1 point taken away
(or equivalently -1 point) for each question answered incorrectly?
Solution:Define random variables S1 . . . S25, where the variable Si is the score,
the student gets on the ith question. The total score of the student is given by
Y =

∑25
i=1 Si. By linearity of expectation we can write:

E[Y ] =
25

∑

i=1

E[Si]

Further for any i,

E[Si] =
1

2
· 2 +

1

2
· (−1) =

1

2
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Substituting the value of E[Si] in the original equation, we get

E[Y ] = 25 ·
1

2
=

25

2

5. • How many permutations of the letters {a,b,c,d,e,f,g,h} are there?
Solution:8! = 8 × 7 × 6 . . . × 1

• How many permutations of {a,b,c,d,e,f,g,h} are there that don’t contain the letters
“bad” (appearing consecutively)?

Solution:To compute the number of permutations that contain, we can consider
“bad” as another alphabet. So we have {c,e,f,g,h,bad} as our alphabet. There-
fore the number of permutations which contain “bad” is given by 6!. Therefore,
number of permutations that do not contain “bad” is 8! − 6!

• How many permutations of {a,b,c,d,e,f,g,h} are there that don’t contain either
the letters “bad” appearing consecutively or the letters “fech” appearing consec-
utively?

Solution:Let Sbad denote the set of permutations that have “bad” occuring in
them. Similarly let Sfech denote the set of permutations that have “fech” occuring
in them.

|Sbad ∪ Sfech| = |Sbad| + |Sfech| − |Sbad ∩ Sfech|

The number of permutations that contain “bad” (|Sbad|) as we computed in the
previous problem is 6!. Similarly considering “fech” as an alphabet, we get that
the number of permutations that contain “fech” is given by 5!. To compute per-
mutations that contain both “bad” and “fech”, we need to look at permutations
of the set {g,bad,fech}. Therefore, the number of permutations that contain both
“bad” and “fech” is 3!. Substituting in the above formula we get

|Sbad ∪ Sfech| = 6! + 5! − 3!

We are interested in finding the number of permutations that do not contain either
“bad” or “fech”. This is given by

Number of permutations without “bad” or “fech” = 8! − (6! + 5! − 3!)

• How many words of length 10 can be constructed using the letters {a,b,c,d,e,f,g,h}
that contain exactly 3 a’s? (They don’t have to have any English meaning.)

Solution:Let us choose the three locations where ‘a’ occurs, this can be done in
(

10
3

)

ways. After filling out the ‘a’s we have 7 choices for each of the remaining 7
locations in the word. Therefore the total number of words that contain exactly
3 a’s is

(

10
3

)

× 77.

6. Suppose a biased coin with probability 3/4 of coming up heads is tossed independently
100 times.
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• What is the conditional probability that the first 50 tosses are heads given that
the total number of heads is 50?

Solution:Let A be the event that there are 50 heads. B be the event that there
are 50 heads in the beginning. We need to compute Pr(B|A)

Pr(A) =

(

100

50

)

(
3

4
)50(

1

4
)50

In order to compute that A ∩ B, we need to compute the probability that there
are 50 heads in the beginning and that there are 50 heads in total. That is the
probability that there are 50 heads, followed by 50 tails.

Pr(A ∩ B) = (
3

4
)50(

1

4
)50

Therefore we get

Pr(A | B) =
Pr(A ∩ B)

Pr(A)
=

1
(

100
50

)

• What is the expected number of heads?

Solution:Define indicator random variables X1 . . .X100, where the variable Xi is
1 if the ith toss is head, and 0 otherwise. The total number of heads is given by
Y =

∑100
i=1 Xi. By linearity of expectation we can write:

E[Y ] =

100
∑

i=1

E[Xi]

Further for any i,

E[Xi] =
3

4
· 1 +

1

4
· 0 =

3

4

Substituting the value of E[Xi] in the original equation, we get

E[Y ] = 100 ·
3

4
= 75

• Suppose that you are paid $50 if the number of heads in the first two tosses is
even and $100 if the number of heads in these first two tosses is odd. What is
your expected return?

Solution:The probability that the number of heads in first two tosses is odd is :

Pr(odd) = Pr(HT ) + Pr(TH) =
3

4
·
1

4
+

1

4
·
3

4
=

3

8

Pr(even) = 1 − Pr(odd) =
5

8

Therefore the expected return is given by

Expected Return =
5

8
· 50 +

3

8
· 100 =

550

8
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7. Use the Euclidean algorithm to find gcd (486, 446).

Solution:

gcd(486, 446) = gcd(446, 40) 486 = 446 · 1 + 40

= gcd(40, 6) 40 = 6 · 6 + 4

= gcd(6, 4) 6 = 4 · 1 + 2

= gcd(4, 2) 4 = 2 · 2 + 0

= gcd(2, 0)

= 2

8. A lake contains n trout. 100 of them are caught, tagged and returned to the lake.
Later another set of 100 trout are caught, selected independently from the first 100.

• Write an expression (in n) for the probability that of the second 100 trout caught,
there are exactly 7 tagged ones.
Solution: P (N = 7) = [C(100, 7)C(n − 100, 93)]/C(n, 100)

• Now consider selecting the second 100 trout with replacement. That is, you repeat
100 times the following steps: select at random a trout in the lake, check if the
trout is tagged and return it to the lake before selecting a new trout. What is the
probability that exactly 7 of the selected trout are tagged?
Solution: P (N = 7) = [C(100, 7)1007(n − 100)93]/n100

9. Prove that any undirected, connected graph with n vertices and no cycles (i.e., a tree)
has exactly n − 1 edges. (You should assume that the graph has no self loops and no
parallel edges. A cycle is a sequence of 2 or more distinct edges that start and end at
the same vertex.)
Solution: Proof by induction
Base Case: n=1, Graph G has 0 edge. Vertices num |V | = 1, edge num |E| = 0, so
|E| = |V | − 1 holds.
I-H: Assume that for any G containing k vertices, |E| = |V |−1 holds, for all 1 ≤ k ≤ n.
(Strong Induction)
To prove: For n+1, the conclusion also holds.
Prove: Let G be a graph with n + 1 vertices. Remove a vertex v and all its edges
from G. Let us say on removing vk+1, the graph G splits in to r pieces(connected
components) C1, . . . , Cr. Let a1, a2, . . . , ar denote the number of vertices in C1, . . . , Cr

respectively, then it is clear that
r

∑

i=1

ai = n

Observe, that since the original G is connected, there is an edge from v to each the
components Ci. Further observe that there cannot be two edges from v to a component,
as then there would be a cycle. Therefore there is exactly one edge from v to each of
the components Ci. As G does not have any cycle, any of the subcomponents Ci also
do not have cycles. Further by definition of Ci, each of them is a connected. Therefore
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applying the induction hypothesis on Ci, we conclude that the number of edges in Ci

is ai − 1. Therefore the total number of edges in G is given by

Total number of edges in G = Number of edges incident on v +
∑

i

Number of edges in Ci

= r +

r
∑

i=1

(ai − 1)

= r +
r

∑

i=1

ai − r

=
∑

i=1

ai

= n

= (n + 1) − 1

Thus by induction the result is true for all n, and hence for all graphs.

10. Suppose that for all n ≥ 1

g(n + 1) = max1≤k≤n[g(k) + g(n + 1 − k) + 1]

and that g(1) = 0. Prove by induction that g(n) = n − 1 for all n ≥ 1.
Solution: Base: n=1, g(1)=0=1-1, it holds.
n=2, g(2) = max1≤k≤1[g(k) + g(1 + 1 − k) + 1] = 1, it holds.
I-H: g(k) = k − 1 holds for k ≥ 1.
To prove: g(k + 1) = k.
Proof:
g(k + 1) = max1≤m≤k[g(m) + g(k + 1 − m) + 1]
= max1≤m≤k[m − 1 + k + 1 − m − 1 + 1]
= max1≤m≤k[k] = k. (k ≥ 1)
So, it still holds.
Conclusion: g(n) = n − 1 for all n ≥ 1.

11. (a) What is the reflexive-symmetric-transitive closure of the relation

R = {(1, 2), (1, 3), (2, 4), (5, 6)}

defined on the set A = {1, 2, 3, 4, 5, 6}.
Solution: Reflexive: Adding (1,1),(2,2),(3,3)(4,4),(5,5),(6,6).
Symmetric: Adding (2,1),(3,1),(4,2),(6,5).
Transitive: Adding (1,4),(4,1),(2,3),(3,2),(3,4),(4,3).
The final result is the original pairs in R and all the added ones.

(b) How many different binary relations on a set A of cardinality n are both symmetric
and reflexive?
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Solution: |A| = n. To satisfy the reflexive requirement, we should add all pairs of
(ai, ai). Then, we can freely select the pairs of the form that (ai, aj), i < j(and the
opposite one(aj, ai)), to satisfy the “symmetric” requirement. There are totally
n(n − 1)/2 such (ai, aj), i < j, and each of them can be in or not in the relation.
So the number of possible choices is 2n(n−1)/2.
So, the number of the possible relations is:
N = 2n(n−1)/2

12. Consider 6 letter words (not necessarily meaningful) over an alphabet of 26 letters.

(a) How many different 6 letter words are there?
Solution: 266.

(b) How many different 6 letter words are there with at least one repeated letter?
Solution: If there is no repeated letter, the number of the possible choices is
P (26, 6). So, the number of the words with at least one repeated letter is
266 − P (26, 6), where P(26,6) is the computation of permutation.

(c) Consider the relation R on 6 letter words, defined by w1Rw2 if and only if w1 is
the reverse of w2. For example, with w1 = aabcde and w2 = edcbaa, we have
w1Rw2. Is R an equivalence relation? If not, why not?
Solution: R is not an equivalence relation. Because it doesn’t satisfy the reflexive
requirement. For example, w1 = aabcde,w1Rw1 is not correct.

(d) Consider the relation R on 6 letter words, defined by w1Rw2 if and only if w1 is
a permutation of w2. For example, with w1 = aabcde and w2 = ecaadb, w1Rw2.

i. Is this an equivalence relation? If not, why not?
Solution: Yes. It satisfies all the requirements: transitive, reflexive and
symmetric.

ii. If so, how many words are in the equivalence class [aaabbc]?
Solution: First consider the “c”, and it has 6 possible positions. Then for
the two “b”s, the number of the possible choices is C(5, 2). So, there are
6C(5, 2) words in the class.

13. Let G be a complete (i.e., every edge is present), simple, undirected graph on n nodes.
Color each of the edges independently either red or blue equally likely (so the proba-
bility that a particular edge is colored red is 1/2). Let S be a particular subset of k
nodes in G. What is the probability that all the edges that have both endpoints in S
are colored red? (We say such a subset S is red and monochromatic.)
Solution: If a set S is red and monochromatic, we denote S = RM .
For a particular subset S containing k nodes, the number of the edges contained in
S is k(k − 1)/2. So, the number of possible coloring methods is 2k(k−1)/2. Then, the
possibility that S = RM is 1/2k(k−1)/2.

14. Exact same setup as previous question: What is the expected number of subsets of
k vertices (out of the n vertices total) that are red and monochromatic? (Hint: use
linearity of expectation.)
Solution: Given a particular S containing k nodes, from the above problem, we know
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the probability that S is red and monochromatic is 1/2k(k−1)/2. Totally, there are
C(n, k) possible such S, so the expected number is:
E(N)=C(n, k)2−k(k−1)/2.

15. Let A be the set of all undirected, simple graphs on n nodes. Define a relation R on
A as follows: Two graphs G and G′ in A are related by R if there is a bijection f from
the vertices of G to the vertices of G′ such that (u, v) is an edge in G if and only if
(f(u), f(v)) is an edge in G′. True or false: R is an equivalence relation.

Solution: True. In fact the relation partitions the set of all possible undirected, simple
graphs into equivalence classes of isomorphic graphs. The relation is reflexive since,
for a given graph G the identity function is a bijection f that satisfies the definition.
Further, if f is a bijection for (G, G′), then note that inverse function f−1 is a bijection
for (G′, G). Therefore the relation is symmetric. Further if (G1, G2) ∈ R with a
corresponding bijection f , and (G2, G3) ∈ R with a correspoding bijection g, then g ◦f
is a bijection from G1 to G3 satisfying the above property. Therefore (G1, G3) ∈ R and
R is a transitive relation.

16. Prove by induction that if n is an odd, positive integer, n2 − 1 is divisible by 4. (Write
out your solution, as I did in class, in 5 steps labelled as follows: base case, inductive
hypothesis, to prove, inductive step, and conclusion.)

Solution: Base case: n = 1: n2 − 1 = 0 is divisible by 4.
Inductive hypothesis: if n is odd positive integer, n2 − 1 is divisible by 4.
To prove: (n + 2)2 − 1 is divisible by 4.
Inductive step:
(n + 2)2 − 1 = n2 + 4n + 4 − 1 = (n2 − 1) + 4(n + 1).
By inductive hypothesis, there exists k s.t. n2 − 1 = 4k.
Thus, (n + 2)2 − 1 = 4k + 4(n + 1) = 4(n + k + 1).
Then, by definition of divisibility,(n + 2)2 − 1 is divisible by 4.
Conclusion: by the principle of mathematical induction, for all n, if n is odd, positive
integer then n2 − 1 is divisible by 4.

17. • In the following sentence, fill in both blanks with the smallest integer such that
your answer is guaranteed to be correct for all simple planar graphs.

Recall that in a simple planar graph with n nodes, the number of edges
is at most 3n − 6. This implies that the sum of the degrees of all the
nodes is at most . . . . . . . . . . . . . 6n− 12. Consequently, there is always a
node of degree at most . . . . . . . . . . . . . b(6n − 12)/nc ≤ 5.

• Use your answer to the previous question to prove by induction that every pla-
nar graph is 6 colorable. (Write out your solution, as I did in class, in 5 steps
labelled as follows: base case, inductive hypothesis, to prove, inductive step, and
conclusion.)

Solution: Let Gn = (V, E) be a simple planar graph, where |V | = n.
Base case: n = 1: G1 is 1 colorable ⇒ G1 is 6 colorable.
Inductive hypothesis: Gn is 6 colorable.
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To prove:Gn+1 is 6 colorable.
Inductive step:
By the previous question, there is a node v ∈ V s.t. d(v) = k ≤ 5. Let
G′ = (V ′, E ′), where V = V \ {v}, E = {(u, w) ∈ E|u 6= v ∧ w 6= v} (G′ is
obtained from G by removing v and all its adjacent edges). Then G′ is a planar
graph with n nodes. By inductive hypothesis, G′ is 6 colorable. Let c1, . . . , ck be
the colors of the nodes adjacent to v. Since k ≤ 5 < 6 we can color v in the one
of the remaining colors.
Conclusion: every planar graph is 6 colorable.

18. Show that in any simple graph there is a path from any vertex of odd degree to some
other vertex of odd degree.

Solution: Let G = (V, E) be a simple graph, v ∈ V a node of odd degree. Perform
a walk in the graph G starting at node v,where at each step an edge is chosen from
previously unvisited edges, until the some other node of odd degree is reached or a step
cannot be performed anymore.

• if the other node of odd degree is reached, we are done.

• If we cannot perform a step anymore, we are not at the first node - otherwise
an even number of adjacent edges is visited, which means that the degree of v is
even, contradicting the choice of v. Thus, each node in the path, except for first
and last, has even number of adjacent edges visited. The first and last have odd
number of adjacent edges visited. Since we cannot perform a step, every edge
adjacent to the last node has been visited, which implies that the degree of a last
node is odd.

In both cases, there exits a path from v to some other node of odd degree. Q.E.D.

19. For which values of m and n does the complete bipartite graph Km,n have an

• Euler circuit

Solution: For even m and n

• Euler path.

Solution: For (m = 2, n is odd), (m is odd, n = 2), and (m = 1, n = 1).

20. Questions like the following where a picture of some graph is given:

(a) Is the following graph connected? Yes

(b) Draw an Euler tour for the following graph. e → a → f → d → e → b → c →
d → a → c

(c) Is the following graph planar? If so, how many faces does it have? Yes, 5

(d) Can the following graph be 3 colored? Yes
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