
CSE 321

Homework 3
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Let’s assume that the statement is false. This means that for every pair of the 10 chosen numbers,
the largest one is greater than twice the smaller one. Let’s order the 10 chosen numbers, smallest
to largest, and call them x1, x2, . . . , x10.

It’s trivial that x1 ≥ 1. Since (x1, x2) is a pair, x2 is greater than 2x1. Using x1 ≥ 1, we get
that 2x1 ≥ 2, therefore x2 > 2x1 ≥ 2 or x2 > 2 which means that x2 ≥ 3.

Using the same argument we can see that x3 > 2x2 ≥ 6, x3 ≥ 7. Continuing in the same way

x4 > 2x3 ≥ 14 , x4 ≥ 15
x5 > 2x4 ≥ 30 , x5 ≥ 31
x6 > 2x5 ≥ 62 , x6 ≥ 63

x7 > 2x6 ≥ 126 , x7 ≥ 127
x8 > 2x7 ≥ 254 , x8 ≥ 255
x9 > 2x8 ≥ 510 , x9 ≥ 511

x10 > 2x9 ≥ 1022 , x10 ≥ 1023

We reach the conclusion that x10 ≥ 1023 which is a contradiction since the numbers are supposed
to be less than or equal to 1000. Therefore the statement is true.
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By induction
P (n)←→ ¬(p1 ∨ p2 ∨ · · · ∨ pn)⇔ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn

• For n = 1, P (1) holds since ¬(p1)⇔ ¬p1

• Assume P (k) holds, or

¬(p1 ∨ p2 ∨ · · · ∨ pk)⇔ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pk
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• To prove P (k + 1)

¬(p1 ∨ p2 ∨ · · · ∨ pk ∨ pk+1)⇔ ¬((p1 ∨ p2 ∨ · · · ∨ pk)
∨

pk+1)
⇔ ¬(p1 ∨ p2 ∨ · · · ∨ pk)

∧
¬pk+1 ,De Morgan’s Law

⇔ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pk
∧
¬pk+1 , Induction hypothesis

P (k + 1) holds.
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x2 − 7y2 = 3⇔ x2 = 7y2 + 3⇒ x2 ≡ 3 mod7

Therefore all solutions for x must satisfy x2 ≡ 3 mod7. Any integer can be congruent to 0,1,2,3,4,5,6
modulo 7. Let’s check each case

x mod7 x2 mod7
0 0
1 1
2 4
3 2
4 2
5 4
6 1

We see that there is no case where x2 ≡ 3 mod7 therefore no integer solution exists.
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By induction on P (n) = n2+n+2
2

• For the case n = 1, there is just one line which clearly creates 2 regions.

• Assume that for k lines, the number of regions is P (k) = k2+k+2
2

• Let’s consider the case of k + 1 lines. Pick any line x. That line must intersect every other
line in different points in the plane, since no lines are parallel or interest at the same point.

Consider what happens between two consecutive intersection points. If you don’t consider
line x there is a region there created by the other k lines. Now, line x splits that region into
2 regions. Therefore between 2 consecutive intersections line x adds an extra region to the
total. There are n− 1 pairs of consecutive intersection points. Furthermore, line x creates 2
extra regions, one before the first intersection and one after the last one. Therefore the total
number of extra regions is k + 1.
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The total number of regions for k + 1 lines is

P (k) + (k + 1) =
k2 + k + 2

2
+ k + 1 =

=
k2 + k + 2 + 2k + 2

2
=

=
(k2 + 2k + 1) + k + 1 + 2

2
=

=
(k + 1)2 + (k + 1) + 2

2
=

= P (k + 1)
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In order to prove the statement we are going to prove that

P (n) = 1 +
1
4

+
1
9

+ · · ·+ 1
n2
≤ 2− 1

n

By induction.

• P (1) = 1 ≤ 1 = 2− 1
1

• Assume that P (k) ≤ 2− 1
k
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•

P (k + 1) = 1 +
1
4

+
1
9

+ · · ·+ 1
k2

+
1

(k + 1)2

= P (k) +
1

(k + 1)2

≤ 2− 1
k

+
1

(k + 1)2
, Induction hypothesis

= 2− (k + 1)2 − k

k(k + 1)2

= 2− k2 + 2k + 1− k

k(k + 1)2

= 2− k2 + k + 1
k(k + 1)2

= 2− k(k + 1) + 1
k(k + 1)2

= 2− k(k + 1)
k(k + 1)2

+
1

k(k + 1)2

= 2− 1
k + 1

+
1

k(k + 1)2

≤ 2− 1
k + 1

,
1

k(k + 1)2
≥ 0

This concludes the proof for P (n) ≤ 2− 1
n . But since 2− 1

n < 2, we conclude that P (n) < 2
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Consider the prime factorization of 100!. For every 0 at the end of 100! there must be both a 2
and a 5 in the prime factorization. It is also the case that for every pair of 2 and 5 in the prime
factorization we’re going to get a 0 at the end. Clearly, the number of 0s is equal to the smallest
power of 2 or 5 in the prime factorization.

2 is contained in all even numbers (we got 50 of them). 5 is contained once for every multiple
of 5, namely 5, 10, 15, . . . , 100. It is contained twice in 25, 50, 75, 100. The total number of 5s is
therefore 24 and that is the number of 0s at the end.
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Since a ≡ b(mod m), a = km + b for some k. Consider d, any common divisor of b and m. Clearly
d|km and d|b, therefore d|a. Similarly if we write b = a− km and consider d′ any common divisor
of a and m, we can see that d′|b.

Therefore divisors of a,m are common with divisors of b, m and so must be the greatest one,
therefore gcd(a,m) = gcd(b, m).
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