1. It is a somewhat amazing fact that the greatest common divisor can be written as a linear combination, that is, $\gcd(a, b) = sa + tb$, for some integers s and t. It is sometimes important to be able to compute not only the greatest common divisor, but the coefficients s and t as well. (Part (b) of this problem gives an example application.) The following extension of Euclid’s algorithm computes the gcd g plus those coefficients. Try it out on some examples.

(The programming notation $(x, y) \leftarrow (e, f)$ means simultaneous assignments of the old value of e to x and the old value of f to y. For instance, the body of the ordinary Euclidean algorithm’s loop could have been written $(x, y) \leftarrow (y, x \mod y)$. Note that this is exactly the effect of the statement $(a_0, a_1) \leftarrow (a_1, a_0 - q \cdot a_1)$ below, so that the output g is still $\gcd(a, b)$.)

```
procedure Extended_Euclid (a, b: integer) returns g, s, t: integer
begin
    (a_0, a_1) ← (a, b);
    (s_0, s_1) ← (1, 0);
    (t_0, t_1) ← (0, 1);
    while a_1 ≠ 0 do
        begin
            q ← |a_0/a_1|;
            (a_0, a_1) ← (a_1, a_0 - q \cdot a_1);
            (s_0, s_1) ← (s_1, s_0 - q \cdot s_1);
            (t_0, t_1) ← (t_1, t_0 - q \cdot t_1);
        end;
        g ← a_0;
        s ← s_0;
        t ← t_0;
    end.
```

(a) Prove that the inputs and outputs satisfy $g = sa + tb$. (Hint: Use induction to prove that $a_0 = s_0a + t_0b$ and $a_1 = s_1a + t_1b$ at the beginning of each iteration.)

(b) The inverse of $a \mod m$, if it exists, is an integer s such that $as \equiv 1 \pmod m$. As an example of the usefulness of this algorithm, show that whenever $\gcd(a, m) = 1$, the outputs of `Extended_Euclid(a, m)` produce an inverse of $a \mod m$. (It turns out that an inverse of $a \mod m$ only exists when $\gcd(a, m) = 1$. It’s not a hard proof, if you feel like trying it.)

2. A binary tree is either empty, or consists of a root node and a “left subtree” and “right subtree”, which are themselves binary trees with no nodes in common. (See Figure 8 in Section 8.1 for an example.) Any node in a binary tree both of whose subtrees are empty is called a leaf. For example, the tree in Figure 8(a) of Section 8.1 has 6 leaves: f, g, e, j, k, m. The height of a binary tree is the distance from the root to the farthest leaf. The tree in Figure 8(a) of Section 8.1 has height 4, m being the farthest leaf from the root. (Note that the distance from the root to m is considered to be 4 rather than 5: it’s the number of edges on the path, rather than the number of nodes.) By induction, prove that for any positive integer n, any binary tree with n leaves has height at least $\log_2 n$. Be careful of the possibility that a node has one empty subtree and one nonempty subtree. (Hint: it will be simplest if your induction mirrors the recursive definition of binary tree given above.)

3. Section 3.3, exercise 28. I don’t know what is meant by a “recursive proof”; instead, use induction on the length $|w_2|$. I want you to use the recursive definition of reversal given in exercise 27, rather than the more imprecise definition given before exercise 26.