1. For each of the following functions, state whether or not it is injective, and whether or not it is surjective. Justify your answers.

(a) \(f : \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) = n^2 \).
(b) \(f : \mathbb{Z} \rightarrow \mathbb{N} \), where \(f(n) = n^2 \).
(c) \(f : \mathbb{R} \rightarrow \mathbb{R} \), where \(f(n) = 3n + 7 \).
(d) \(f : \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) = \lceil n/3 \rceil \).
(e) \(f : \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) = 3 \lceil n/3 \rceil \).
(f) \(f : \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) = \begin{cases} n + 1, & \text{if } n \text{ is even} \\ n - 1, & \text{if } n \text{ is odd} \end{cases} \).

2. Suppose you graph a function \(f : \mathbb{R} \rightarrow \mathbb{R} \). The fact that \(f \) is a function means that any straight vertical line will intersect the graph of \(f \) at exactly one point. What similar statement can you make about the graph of \(f \) if \(f \) is

(a) injective?
(b) surjective?
(c) bijective?

3. Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) and \(g : \mathbb{N} \rightarrow \mathbb{N} \), where \(f(x) = x \mod 28 \) and \(g(x) = x + 1 \). What are each of the functions \(f \circ g \) and \(g \circ f \)? Either prove that these two functions are equal, or give a counterexample proving that they are unequal.

4. Draw the graph of the function \(f : \mathbb{R} \rightarrow \mathbb{R} \), where \(f(x) = \lfloor x/4 \rfloor \). Be sure your graph extends into both positive and negative values of \(x \).

6. Section 2.3, exercise 12. Justify your answer. The function \(n! \) is defined on page 85. (Hint: Think about the unique factorization of 100! into primes. What about this factorization determines the number of zeros at the end of the decimal representation of 100! ?)