
CSE 321: Discrete Structures
Assignment #5
due: Wednesday, Nov 5

1. Euclids algorithm for computing the greatest common divisor of two numbers a > b ≥ 0
can be written recursively as follows:

procedure Euclid (a, b: integer) returns g: integer
begin

if b = 0 then return a;
else return

Euclid (b, a mod b);
end .

Prove by induction that for all k ≥ 2, if Euclid(a, b) performs at least k recursive calls,
then a ≥ fk+1 and b ≥ fk, where fi is the i-th Fibonacci number.

2. It is a somewhat amazing fact that the greatest common divisor can be written as
a linear combination, that is, gcd(a, b) = sa + tb, for some integers s and t. It is
sometimes important to be able to compute not only the greatest common divisor, but
the coefficients s and t as well. (Part (b) of this problem gives an example application.)
The following extension of Euclid’s algorithm computes the gcd g plus those coefficients.
Try it out on some examples.

(The programming notation (x, y)← (e, f) means simultaneous assignments of the old
value of e to x and the old value of f to y. For instance, the body of the ordinary
Euclidean algorithm’s loop could have been written (x, y) ← (y, x mod y). Note that
this is exactly the effect of the statement (a0, a1)← (a1, a0− q ∗ a1) below, so that the
output g is still gcd(a, b).)

procedure Extended Euclid (a, b: integer) returns g, s, t: integer
begin

(a0, a1)← (a, b);
(s0, s1)← (1, 0);
(t0, t1)← (0, 1);
while a1 6= 0 do

begin

q ← ba0/a1c;
(a0, a1)← (a1, a0 − q ∗ a1);
(s0, s1)← (s1, s0 − q ∗ s1);
(t0, t1)← (t1, t0 − q ∗ t1);

end ;
g ← a0;
s← s0;



t← t0;
end .

(a) Prove that the inputs and outputs satisfy g = sa + tb. (Hint: Use induction to
prove that a0 = s0a + t0b and a1 = s1a + t1b at the beginning of each iteration.)

(b) The inverse of a mod m, if it exists, is an integer s such that as ≡ 1 (mod m). As
an example of the usefulness of this algorithm, show that whenever gcd(a, m) = 1,
the outputs of Extended Euclid(a, m) produce an inverse of a mod m. (This is
used in the RSA cryptosystem.)

3. A binary tree is either empty, or consists of a root node and a “left subtree” and “right
subtree”, which are themselves binary trees with no nodes in common. See Figure 8 in
Section 9.1 (Section 8.1 in the 4th edition) for an example. Any node in a binary tree
both of whose subtrees are empty is called a leaf. For example, the tree in Figure 8(a)
of Section 8.1 has 6 leaves: f, g, e, j, k, m. The height of a binary tree is the distance
from the root to the farthest leaf. The tree in Figure 8(a) of Section 8.1 has height 4,
m being the farthest leaf from the root. (Note that the distance from the root to m
is considered to be 4 rather than 5: it’s the number of edges on the path, rather than
the number of nodes.) By induction, prove that for any positive integer n, any binary
tree with n leaves has height at least log2 n. Be careful of the possibility that a node
has one empty subtree and one nonempty subtree. (Hint: it will be simplest if your
induction mirrors the recursive definition of binary tree given above.)

4. Every day, starting on day 0, one vampire arrives in Seattle from Transylvania and,
starting on the day after its arrival, bites one Seattlite every day. People bitten become
vampires themselves and live forever. New vampires also bite one person each day
starting the next day after they were bitten. Let Vn be the number of vampires in
Seattle on day n. So, for example, V0 = 1, V1 = 3 (one that arrived from Transylvania
on day 0, one that he bit on day 1, and another one that arrived from Transylvania
on day 1), V2 = 7 and so on. Write a recurrence relation for Vn that is valid for any
n ≥ 2. Prove by induction on n that Vn ≤ 3n.


