1. It is a somewhat amazing fact that the greatest common divisor can be written as a linear combination, that is, \(\gcd(a, b) = sa + tb \), for some integers \(s \) and \(t \). It is sometimes important to be able to compute not only the greatest common divisor, but the coefficients \(s \) and \(t \) as well. (Part (b) of this problem gives an example application.) The following extension of Euclid’s algorithm computes the \(\gcd \) \(g \) plus those coefficients. Try it out on some examples.

(The programming notation \((x, y) \leftarrow (e, f) \) means simultaneous assignments of the old value of \(e \) to \(x \) and the old value of \(f \) to \(y \). For instance, the body of the ordinary Euclidean algorithm's loop could have been written \((x, y) \leftarrow (y, x \mod y) \). Note that this is exactly the effect of the statement \((a_0, a_1) \leftarrow (a_1, a_0 - q \cdot a_1) \) below, so that the output \(g \) is still \(\gcd(a, b) \).

procedure Extended_Euclid \((a, b: \text{integer})\) **returns** \(g, s, t: \text{integer} \)

begin

\((a_0, a_1) \leftarrow (a, b);\)
\((s_0, s_1) \leftarrow (1, 0);\)
\((t_0, t_1) \leftarrow (0, 1);\)

while \(a_1 \neq 0 \) **do**

begin

\(q \leftarrow \lfloor a_0 / a_1 \rfloor;\)
\((a_0, a_1) \leftarrow (a_1, a_0 - q \cdot a_1);\)
\((s_0, s_1) \leftarrow (s_1, s_0 - q \cdot s_1);\)
\((t_0, t_1) \leftarrow (t_1, t_0 - q \cdot t_1);\)

end

\(g \leftarrow a_0;\)
\(s \leftarrow s_0;\)
\(t \leftarrow t_0;\)

end

(a) Prove that the inputs and outputs satisfy \(g = sa + tb \). (Hint: Use induction to prove that \(a_0 = s_0 a + t_0 b \) and \(a_1 = s_1 a + t_1 b \) at the beginning of each iteration.)

(b) The inverse of \(a \) mod \(m \), if it exists, is an integer \(s \) such that \(as \equiv 1 \pmod{m} \). As an example of the usefulness of this algorithm, show that whenever \(\gcd(a, m) = 1 \), the outputs of Extended_Euclid\((a, m)\) produce an inverse of \(a \) mod \(m \). (It turns out that an inverse of \(a \) mod \(m \) only exists when \(\gcd(a, m) = 1 \). It’s not a hard proof, if you feel like trying it.)

2. A binary tree is either empty, or consists of a root node and a “left subtree” and “right subtree”, which are themselves binary trees with no nodes in common. (See Figure 8 in Section 8.1 for an example.) Any node in a binary tree both of whose subtrees are empty is called a leaf. For example, the tree in Figure 8(a) of Section 8.1 has 6 leaves: \(f, g, e, j, k, m \). The height of a binary tree is the distance from the root to the farthest leaf. The tree in Figure 8(a) of Section 8.1 has height 4, \(m \) being the farthest leaf from the root. (Note that the distance from the root to \(m \) is considered to be 4 rather than 5: it’s the number of edges on the path, rather than the number of nodes.) By induction, prove that for any positive integer \(n \), any binary tree with \(n \) leaves has height at least \(\log_2 n \). Be careful of the possibility that a node has one empty subtree and one nonempty subtree. (Hint: it will be simplest if your induction mirrors the recursive definition of binary tree given above.)

3. Section 3.3, exercise 28. I don’t know what is meant by a “recursive proof”; instead, use induction on the length \(|u_2| \). I want you to use the recursive definition of reversal given in exercise 27, rather than the more imprecise definition given before exercise 26.