Discrete Structures

Sets
Chapter 1, Sections 1.4-1.5

Dieter Fox

Sets

$\diamond a \epsilon A$: Objects in a set are called elements / members of the set.
\diamond Set descriptions: List all elements, set builder notation, Venn diagram
$\diamond A=B$: Two sets A and B are equal if and only if they the same elements.
$\diamond A \subseteq B$: The set A is subset of B if and only if every element of A is also an element of B.
$\diamond A \subset B$: The set A is called proper subset of B if $A \subseteq B$ and $A \neq B$.
$\diamond|S|$: If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. A set is said to be infinite if it is not finite.

Sets

$\diamond P(S)$: The power set of S is the set of all subsets of the set S.
\diamond The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, ..., and a_{n} as its $n t$ th element.
$\diamond A \times B$: The Cartesian product of A and B is the set of all ordered pairs (a, b) where $a \epsilon A$ and $b \in B$.
$\diamond A_{1} \times A_{2} \times \ldots \times A_{n}$: The Cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$ is the set of ordered $n-\operatorname{tuples}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$.

Set operations

$\diamond A \cup B$: The union of A and B is the set that contains all elements that are in A or in B.
$\diamond A \cap B$: The intersection of A and B is the set that contains all elements that are in both A and B.
\diamond Two sets are called disjoint if their intersection is the empty set (\emptyset).
$\diamond A-B$: The difference of A and B is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B wrt. A.
$\diamond \bar{A}$: Let U be the universal set. The complement of A is the complement of A wrt. U.
\diamond The union (intersection) of of a collection of sets is the set that contains those elements that are member of at least one (all) set(s) in the collection.

Set identities

$A \cap U=A$	Identity laws
$A \cup \emptyset=A$	
$A \cup U=U$	Domination laws
$A \cap \emptyset=\emptyset$	Idempotent laws
$A \cup A=A$	Double negation law
$A \cap A=A$	Commutative laws
$\overline{(\bar{A})}=A$	Associative laws
$A \cup B=B \cup A$	
$A \cap B=B \cap A$	Distributive laws
$(A \cup B) \cup C=A \cup(B \cup C)$	De Morgan's laws
$(A \cap B) \cap C=A \cap(B \cap C)$	
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
$\overline{(A \cap B)}=\bar{A} \cup \bar{B}$	
$(A \cup B)=\bar{A} \cap \bar{B}$	

