

Expectation of a function

For any function g and any continuous random variable, X :

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(X(z)) \cdot f_X(z) dz$$

Again, analogous to the discrete case; just replace summation with integration and pmf with the pdf.

We're going to treat this as a definition.

Technically, this is really a theorem; since $f()$ is the pdf of X and it only gives relative likelihoods for X , we need a proof to guarantee it "works" for $g(X)$.

Sometimes called "Law of the Unconscious Statistician."

8

What about $\mathbb{E}[g(X)]$

Let $X \sim \text{Unif}(a, b)$, what about $\mathbb{E}[X^2]$?

$$\mathbb{E}[X^2] =$$

33

Continuous Zoo

$X \sim \text{Unif}(a, b)$
$f_X(k) = \frac{1}{b-a}$
$\mathbb{E}[X] = \frac{a+b}{2}$
$\text{Var}(X) = \frac{(b-a)^2}{12}$

$X \sim \text{Exp}(\lambda)$
$f_X(k) = \lambda e^{-\lambda k}$ for $k \geq 0$
$\mathbb{E}[X] = \frac{1}{\lambda}$
$\text{Var}(X) = \frac{1}{\lambda^2}$

$X \sim \mathcal{N}(\mu, \sigma^2)$
$f_X(k) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
$\mathbb{E}[X] = \mu$
$\text{Var}(X) = \sigma^2$

It's a smaller zoo, but it's just as much fun!

34

Comparing Discrete and Continuous

	Discrete Random Variables	Continuous Random Variables
Probability 0	Equivalent to impossible	All impossible events have probability 0, but not conversely.
Relative Chances	PMF: $p_X(k) = \mathbb{P}(X = k)$	PDF $f_X(k)$ gives chances relative to $f_X(k')$
Events	Sum over PMF to get probability	Integrate PDF to get probability
Convert from CDF to P(M/D)F	Sum up PMF to get CDF. Look for “breakpoints” in CDF to get PMF.	Integrate PDF to get CDF. Differentiate CDF to get PDF.
$\mathbb{E}[X]$	$\sum_{\omega} X(\omega) \cdot p_X(\omega)$	$\int_{-\infty}^{\infty} z \cdot f_X(z) dz$
$\mathbb{E}[g(X)]$	$\sum_{\omega} g(X(\omega)) \cdot p_X(\omega)$	$\int_{-\infty}^{\infty} g(z) \cdot f_X(z) dz$
$\text{Var}(X)$	$\mathbb{E}[X^2] - (\mathbb{E}[X])^2$	$\mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \int_{-\infty}^{\infty} (z - \mathbb{E}[X])^2 f_X(z) dz$

35