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Announcements

Midterm coerage ends with lecture 13 (two days ago).

Normally midterm would be next week, but the 332 midterm is next
week.

So the midterm is later than usual
Good news: more time to study for the midterm

Bad news: the end of the quarter is packed with 2 more quizzes + quiz retakes in
the last three weeks.

HWS5 is delayed, it comes out tonight; due Friday Feb 13
We'll be back to Wed deadlines after midterm.






What have we done over the past 5 weeks?

Counting

Combinations, permutations, indistinguishable elements, starts and bars, inclusion-
exclusion...

Probability foundations

Events, sample space, axioms of probability, expectation, variance
Conditional probability

Conditioning, independence, Bayes’ Rule

Refined our intuition

Especially around Bayes' Rule



What's next?

Continuous random variables.

So far our sample spaces have been countable. What happens if we want to choose
a random real number?

How do expectation, variance, conditioning, etc. change in this new context?
Mostly analogous to discrete cases, but with integrals instead of sums.

Analysis when it's inconvenient (or impossible) to exactly calculate
probabilities.

Central Limit Theorem (approximating discrete distributions with continuous ones)

Tail Bounds/Concentration (arguing it's unlikely that a random variable is far from its
expectation)

A first taste of making predictions from data (i.e., a bit of ML)



Today

Continuous Probability
Probability Density Function
Cumulative Distribution Function

Goal for today is to get intuition on what's different in the continuous
case. Your goal today is to start building up a gut-feeling of what's

happening.
ASK QUESTIONS, (always, but today especially).



~ | Continuous Random Variables



Continuous Random Variables

We'll need continuous probability spaces and continuous random

variables to describe experiments that have uncountably-infinite sample
spaces.

e.g. all real numbers

How long until the next bus shows up?
What location does a dart land?



Continuous Random Variables

Wait, we're computer scientists. Computers don't do real numbers, why
should we?

Continuous random variables will be a useful model for enormous
sample spaces. The math will be easier.

Example: polling a large population. The sample space is actually
discrete. But we're going to round the result anyway. Make it continuous
first for easier math, then round.



Why Need New Rules?

We want to choose a uniformly random real number between 0 and 1.
What's the probability the number is between 0.4 and 0.57

For discrete random variables, we'd ask for %

SO we get %

The mathematical tools to get consistent answers from expressions like
those is calculus.



For Continuous Random ariables

Probabilities make sense if you ask a question about falling into a range.

Probabilities for single outcomes aren’t good to work with. Let X be a
random real number between 0 and 1.

P(X =.1) =77

That probability is 0. Counting sizes of event/sample spaces will not
help us. Instead we'll use random variables.



Let's start with the pmf

For discrete random variables, we defined the pmf: py (k) = P(Y = k).

We can't have a pmf quite like we did for discrete random variables.
Remember P(X =.1) = 0. The PMF would be 0 everywhere...
Let's try to maintain as many rules as we can...

py(k) =0 fx(k) =0

z pY(w) =1 ] fX(k) dk to remember it's

different .

Use fy instead of py




The probability density function

For Continuous random variables, the analogous object is the
“probability density function” we write fx (k) instead of py (k)

Idea: Make it "work right” for events since single outcomes don't make
sense.

b
Pla<X<b)=c j fx(2)dz =c integrating is analogous to sum.



The probability density function

For Continuous random variables, the analogous object is the

"probability density function” we write fx (k) instead of px (k)

|dea: Make it “work right” for events since single outcomes don't make
sense.

b
Pla<X<b)=c J fx(z2)dz =c integrating is analogous to sum.
a

Let’s derive an example PDF together!

For a uniform random real number in [O,1]




The probability density function

For Continuous random variables, the analogous object is the
“probability density function” we write fx (k) instead of py (k)

Idea: Make it "work right” for events since single outcomes don't make
sense.

PO<X<1)=1 integrating is analogous to sum.
[P(X Is negative) =0

P4<X<.5)=.1



The probability density function

For Continuous random variables, the analogous object is the
“probability density function” we write fx (k) instead of py (k)

Idea: Make it "work right” for events since single outcomes don't make
sense.

1
PO<X<1)=1 f fx(z)dz=1 Integrating is analogous to sum.
0

0
P(X is negative) = 0 f fx(z)dz =0

-5
fx(z) dz =1

P4<X<.5)=.1 |
4




PDF for uniform

Let X be a uniform real number between 0 and 1.

What should fx (k) be to make all those events integrate to the right
values?

_J0 ifk<Oork>1
fX(k)_{l if0<k<1



Probability Density Function

So P(X = .1) =77
fx(1) =1

The number that best represents P(X =.1) is 0.
This is different from fy (x)

For continuous probability spaces:

Impossible events have probability 0,
but some probability 0 events might be possible.

So..what is fyx(x)??7?




Using the PDF

Let’s look at a different pdf...
Compare the events: X = .2 and X = .5

P(2—¢/2<X<.2+¢€/2)
—2+€/2

What will the pdf give? f_z_e/z fx(2) dz
fx(2) - €
What happens if we look at the ratio

P(X=.2)
P(X=.5)




Using the PDF

Let's look at a different pdf...

Compare the events: X = .2and X = .5
P(2—€/2<X<.24¢/2)
—2+€/2

What will the pdf give? 2-¢/2 fx(z) dz
fx(2)-€

What happens if we look at the ratio

Pr~2) _ P(2-55X5245) _ efy(2) _ fx(2)
P(X=~.5) IP(.S—%SXS.5+§) efx(5)  fx(5)




So what's the pdf?

It's the number that when integrated over gives the probability of an
event.

Equivalently, it's number such that:
-integrating over all real numbers gives 1.

-comparing fx (k) and fx(€) gives the relative chances of X being near
k or .






What's a CDF?

The Cumulative Distribution Function Fy (k) = P(X < k)

analogous to the CDF for discrete variables.

Fx(k) =P(X <k) = f_koo fx(z) dz

So how do | get from CDF to PDF? Taking the derivative!
d d [ ck
(k) =2 (5, fx(2) dz) = fy ()



Comparing Discrete and Continuous

Probability 0 Equivalent to impossible All impossible events have probability 0, but not
conversely.
Relative Chances PMF: py (k) = P(X = k) PDF fy (k) gives chances relative to fxy (k')
Sum over PMF to get probability Integrate PDF to get probability

O\ n (g Ee B Sum up PMF to get CDF. Integrate PDF to get CDF.
PMF Look for “breakpoints” in CDF to get PMF. Differentiate CDF to get PDF.

E[X] ”

> X(@) - px(@) | 2 r@a
W — 0O
' 9(X@)) - px(@) | 9@ £ dz
w — 00

E[X*] — (E[X])?

E[X2] — (E[X]) = f (z - E[X])2fy(2) dz



What about expectation?

For a random variable X, we define;

E[X] = [_. X(2) fx(2) dz

Just replace summing over the pmf with integrating the pdf.
It still represents the average value of X.



Expectation of a function

For any function g and any continuous random variable, X:

El[gX)] = [ gX(@) - fx(z) dz

Again, analogous to the discrete case; just replace summation with
integration and pmf with the pdf.

We're going to treat this as a definition.

Technically, this is really a theorem; since f() is the pdf of X and it only
gives relative likelihoods for X, we need a proof to guarantee it “works”
for g(X).

Sometimes called “Law of the Unconscious Statistician.”



Linearity of Expectation

Still true!
ElaX + bY + c|] = aE[X] + BE[Y] + ¢

For all X,Y; even if they're continuous.

Won't show you the proof — for just E[aX + b], it's
E[aX + b] = [ [aX(k) + b]fx (k) dk

= [ ax(o) fy()dk + [~ bfy(k)dk

=af" XU fx()dk+b [ fy()dk
= aE[X] + b



Variance

No surprises here

Var(X) = E[X?| — (E[X])? = f fx(k)(X(k) — E[X])? dk




Let's calculate an expectation

Let X be a uniform random number between a and b.

00

EX] = [z fx(2) dz



Let's calculate an expectation

Let X be a uniform random number between a and b.

Elx]= [,z fx(2) dz
=[" z- Odz+f z - —dz+fbooz-0dz

—0+f —dz+0

2 b b? a? b*—a* _ (b+a)(b- a)

Z
T 20-a) 20-a) 2-a)  2(b-a)

2(b—a)

Zz=a

a+b
2



What about E|g(X)]

Let X~Unif(a, b), what about E[X?]?

00

E[X?] = [7, 22 fx(2)dz

= f_aOOZZ'Odz-l-ffZZ -ﬁdz+fboozz-0dz

b ,
=O+fazz-icz+0

1 z3

b—a 3

b _1(b3_a_3)_ 1 (b — )(2_|_ b+b2)
= = 30— a)a a

a’+ab+b?
3




L et’'s assemble the variance

Var(X) = E[X?] — (E[X])?

_a’+ab+b%  (a+b\?
— 3 (T)
__4(a*+ab+b?)  3(a*+2ab+b?)
- 12 B 12
a’-2ab+b?

12
_ (a-b)?
12




Continuous Uniform Distribution

X~Unif(a, b) (uniform real number between a and b)

\
‘ -

PDF: fy(k) = {p—a TG SKSD
L0 otherwise
0 ifk <a
CDF: Fy(k) = I;_—Z ifa<k<bh
1 ifk=>b
E[X] =%
(b—a)?
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