

## Formally...

Let  $X$  be the total number of flips needed,  $Y$  be the flips after the second.

$$\mathbb{P}(Y = k | X \geq 3) = ?$$

...

Which is  $p_X(k)$ .

28

## Poisson Distribution

$$X \sim \text{Poi}(\lambda)$$

Let  $\lambda$  be the average number of incidents in a time interval.

$X$  is the number of incidents seen in a particular interval.

Support  $\mathbb{N}$

$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \text{ (for } k \in \mathbb{N})$$

$$F_X(k) = e^{-\lambda} \sum_{i=0}^{\lfloor k \rfloor} \frac{\lambda^i}{i!}$$

$$\mathbb{E}[X] = \lambda$$

$$\text{Var}(X) = \lambda$$

36

## Try it

More generally, run independent trials with probability  $p$ . How many trials do you need for  $r$  successes?

What's the pmf?

What's the expectation and variance (hint: linearity)

42

Zoo!



| $X \sim \text{Unif}(a, b)$                                                                                           | $X \sim \text{Ber}(p)$                                                                                                                             | $X \sim \text{Bin}(n, p)$                                                                              | $X \sim \text{Geo}(p)$                                                                         |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| $p_X(k) = \frac{1}{b-a+1}$<br>$\mathbb{E}[X] = \frac{a+b}{2}$<br>$\text{Var}(X) = \frac{(b-a)(b-a+2)}{12}$           | $p_X(0) = 1-p$<br>$p_X(1) = p$<br>$\mathbb{E}[X] = p$<br>$\text{Var}(X) = p(1-p)$                                                                  | $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$<br>$\mathbb{E}[X] = np$<br>$\text{Var}(X) = np(1-p)$           | $p_X(k) = (1-p)^{k-1} p$<br>$\mathbb{E}[X] = \frac{1}{p}$<br>$\text{Var}(X) = \frac{1-p}{p^2}$ |
| $X \sim \text{NegBin}(r, p)$                                                                                         | $X \sim \text{HypGeo}(N, K, n)$                                                                                                                    | $X \sim \text{Poi}(\lambda)$                                                                           |                                                                                                |
| $p_X(k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$<br>$\mathbb{E}[X] = \frac{r}{p}$<br>$\text{Var}(X) = \frac{r(1-p)}{p^2}$ | $p_X(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$<br>$\mathbb{E}[X] = n \frac{K}{N}$<br>$\text{Var}(X) = \frac{K(N-K)(N-n)}{N^2(N-1)}$ | $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$<br>$\mathbb{E}[X] = \lambda$<br>$\text{Var}(X) = \lambda$ |                                                                                                |

67