

Try it yourself

Let X be the result shown on a fair die. What is $\mathbb{E}[X]$?

Let Y be the sum of two (independent) fair die rolls. What is $\mathbb{E}[Y]$?

Expectation

The “expectation” (or “expected value”) of a random variable X is:

$$\mathbb{E}[X] = \sum_k k \cdot \mathbb{P}(X = k)$$

41

Variance

Variance

The variance of a random variable X is

$$\text{Var}(X) = \sum_{\omega} \mathbb{P}(\omega) \cdot (X(\omega) - \mathbb{E}[X])^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

The first two forms are the definition. The last one is an algebra trick.

If X and Y are independent, then
 $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

42

What does Independence give you?

$$\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

What does XY mean? I rolled two dice, let X be the red die, Y the blue die. XY is the random variable that tells you the product of the two dice.

That's a function that takes in an outcome and gives you a number back...so a random variable!! (Same for $X + Y$).

43

Independence of Random Variables

That's for events...what about random variables?

Independence (of random variables)

X and Y are independent if for all k, ℓ

$$\mathbb{P}(X = k, Y = \ell) = \mathbb{P}(X = k)\mathbb{P}(Y = \ell)$$

We'll often use commas instead of \cap symbol.

44