

Two descriptions

PROBABILITY MASS FUNCTION

Defined for all \mathbb{R} inputs.

Usually has “0 otherwise” as an extra case.

$$\sum_x p_X(x) = 1$$

$$0 \leq p_X(x) \leq 1$$

$$\sum_{z:z \leq x} p_X(z) = F_X(x)$$

CUMULATIVE DISTRIBUTION FUNCTION

Defined for all \mathbb{R} inputs.

Often has “0 otherwise” and 1 otherwise” extra cases

Non-decreasing function

$$0 \leq F_X(x) \leq 1$$

$$\lim_{x \rightarrow -\infty} F_X(x) = 0$$

$$\lim_{x \rightarrow \infty} F_X(x) = 1$$

14

Try It Yourself

There are 20 balls, numbered 1,2,...,20 in an urn.

You'll draw out a size-three subset. (i.e. without replacement)

$\Omega = \{\text{size three subsets of } \{1, \dots, 20\}\}$, $\mathbb{P}(\cdot)$ is uniform measure.

Let X be the largest value among the three balls.

If outcome is $\{4,2,10\}$ then $X = 10$.

Write down the PMF of X ; Write down the CDF of X .

10

Random Variable

$X: \Omega \rightarrow \mathbb{R}$ is a random variable
 $X(\omega)$ is the summary of the outcome ω

Expectation

The “expectation” (or “expected value”) of a random variable X is:

$$\mathbb{E}[X] = \sum_k k \cdot \mathbb{P}(X = k)$$

34

Try it yourself

Let X be the result shown on a fair die. What is $\mathbb{E}[X]$?

Let Y be the sum of two (independent) fair die rolls. What is $\mathbb{E}[Y]$?

21