
More Practice
Independence, Conditioning, Bayes

CSE 312 Winter 26

Lecture 8



Today

Practice (independence and conditioning)

Bayes’ Rule in the real world!

Announcements

Please don’t discuss the quiz yet (makeups early next week)

HW3 updated (by noon today):
Extra info in Problem 1

We released the coding question (will be due with HW4, but we’d recommend you 
start now). 



Conditional Independence



Conditional Independence (definition)

We say 𝐴 and 𝐵 are conditionally independent on 𝐶 if 

ℙ 𝐴 ∩ 𝐵 𝐶 = ℙ 𝐴 𝐶 ⋅ ℙ(𝐵|𝐶)

i.e. if you condition on 𝐶, they are independent. 



Conditional Independence Example

You have two coins. Coin 𝐴 is fair, coin 𝐵 comes up heads with 
probability 0.85. 

You will roll a (fair) die, if the result is odd flip coin 𝐴 twice 
(independently); if the result is even flip coin 𝐵 twice (independently)

Let 𝐶1 be the event “the first flip is heads”, 𝐶2 be the event “the second 
flip is heads”, 𝑂 be the event “the die was odd”

Are 𝐶1 and 𝐶2 independent? Are they independent conditioned on 𝑂?



(Unconditioned) Independence

ℙ 𝐶1 = ℙ 𝑂 ℙ 𝐶1 𝑂 + ℙ ത𝑂 ℙ(𝐶1| ത𝑂)

=
1

2
⋅

1

2
+

1

2
⋅ 0.85 = .675

ℙ 𝐶2 = .675 (the same formula works)

ℙ 𝐶1 ℙ 𝐶2 =.6752 = .455625

ℙ 𝐶1 ∩ 𝐶2 = ℙ 𝑂 ℙ 𝐶1 ∩ 𝐶2 𝑂 + ℙ ത𝑂 ℙ(𝐶1 ∩ 𝐶2| ത𝑂)

=
1

2
⋅

1

4
+

1

2
⋅.852 = .48625

Those aren’t the same! They’re not independent!

Intuition: seeing a head gives you information – information that it’s 
more likely you got the biased coin and so the next head is more likely. 



Conditional Independence (computation)

ℙ 𝐶1 𝑂 = 1/2

ℙ 𝐶2 𝑂 = 1/2

ℙ 𝐶1 ∩ 𝐶2 𝑂 =
1

2
⋅

1

2
= 1/4

ℙ 𝐶1 𝑂 ℙ 𝐶2 𝑂 = ℙ(𝐶1 ∩ 𝐶2|𝑂)

Yes! 𝐶1 and 𝐶2 are conditionally independent, conditioned on 𝑂.



Takeaway

Read a problem carefully – when we say “these steps are independent 
of each other” about some part of a sequential process, it’s usually 
“conditioned on all prior steps, these steps are conditionally 
independent of each other.”

Those conditional steps are usually dependent (without conditioning) 
because they might give you information about which branch you took.



More Bayes Practice



A contrived example

You have three red marbles and one blue marble in your left pocket, 
and one red marble and two blue marbles in your right pocket.

You will flip a fair coin; if it’s heads, you’ll draw a marble (uniformly) from 
your left pocket, if it’s tails, you’ll draw a marble (uniformly) from your 
right pocket.

Let 𝐵 be you draw a blue marble. Let 𝑇 be the coin is tails.

What is ℙ(𝐵|𝑇) what is ℙ(𝑇|𝐵) ?



Updated Sequential Processes
You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Updated Sequential Processes (answer)
You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

ℙ 𝐵 𝑇 = 2/3; ℙ 𝐵 =
1

8
+

1

3
=

11

24

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.



Flipping the conditioning (marbles)

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

The right (tails) pocket is far more likely to produce a blue marble if picked 

than the left (heads) pocket is. Seems like ℙ(𝑇|𝐵) should be greater than ½.



Flipping the conditioning (marbles, answer)

What about ℙ(𝑇|𝐵)?

Bayes’ Rule says:

ℙ 𝑇 𝐵 =
ℙ(𝐵|𝑇)ℙ 𝑇

ℙ 𝐵

=
2

3
⋅
1

2

11/24
= 8/11

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.



The Technical Stuff



Proof of Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
 by definition of conditional probability

Now, imagining we get 𝐴 ∩ 𝐵 by conditioning on 𝐴, we should get a 
numerator of ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

=
ℙ(𝐵|𝐴)⋅ℙ 𝐴

ℙ 𝐵

As required. 



A Technical Note

After you condition on an event, what remains is a probability space.

With 𝐵 playing the role of the sample space, 

ℙ(𝜔|𝐵) playing the role of the probability measure.

All the axioms are satisfied (it’s a good exercise to check)

That means any theorem we write down has a version where you 
condition everything on 𝐵. 



An Example

Bayes Theorem still works in a probability space where we’ve already 
conditioned on 𝑆.

ℙ 𝐴 [𝐵 ∩ 𝑆] =
ℙ 𝐵 [𝐴 ∩ 𝑆] ⋅ℙ 𝐴 𝑆

ℙ(𝐵|𝑆)

Complementary law still works in a probability space where we’ve 
already conditioned on 𝑆

ℙ 𝐴 𝐶 = 1 − ℙ ҧ𝐴 𝐶



A Quick Technical Remark

I often see students write things like 

ℙ([𝐴 𝐵] 𝐶) 

This is not a thing. 

You probably want ℙ(𝐴| 𝐵 ∩ 𝐶 )

𝐴|𝐵 isn’t an event – it’s describing an event and telling you to restrict 
the sample space. So you can’t ask for the probability of that 
conditioned on something else.



Chain Rule



Chain Rule (definition)

We defined conditional probability as: ℙ 𝐴 𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵

Which means ℙ 𝐴 ∩ 𝐵 = ℙ(𝐴|𝐵)ℙ(𝐵)

ℙ 𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛

= ℙ 𝐴𝑛 𝐴1 ∩ ⋯ ∩ 𝐴𝑛−1 ⋅ ℙ 𝐴𝑛−1 𝐴1 ∩ ⋯ ∩ 𝐴𝑛−2 ⋯ ℙ 𝐴2 𝐴1 ⋅ ℙ(𝐴1)

Chain Rule



Chain Rule Example

Shuffle a standard deck of 52 cards (so every ordering is equally likely).
Let 𝐴 be the event “The top card is a K ”

Let 𝐵 be the event “the second card is a J 

Let 𝐶 be the event “the third card is a 5 

What is ℙ(𝐴 ∩ 𝐵 ∩ 𝐶)?

Use the chain rule!

ℙ 𝐴 ⋅ ℙ 𝐵 𝐴 ⋅ ℙ(𝐶|𝐴 ∩ 𝐵) 
1

52
⋅

1

51
⋅

1

50
 



More Independence



Independence of events

Recall the definition of independence of events:

Two events 𝐴, 𝐵 are independent if 

ℙ 𝐴 ∩ 𝐵 = ℙ 𝐴 ⋅ ℙ(𝐵)

Independence



Independence for 3 or more events

For three or more events, we need two kinds of independence

Events 𝐴1, 𝐴2, … , 𝐴𝑛 are mutually independent if 

ℙ 𝑨𝒊𝟏
∩ 𝑨𝒊𝟐

∩ ⋯ ∩ 𝑨𝒊𝒌
= ℙ 𝑨𝒊𝟏

⋅ ℙ 𝑨𝒊𝟐
⋯ ℙ 𝑨𝒊𝒌

 

for every subset {𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} of  {𝟏, 𝟐, … , 𝒏}.

Mutual Independence

Events 𝐴1, 𝐴2, … , 𝐴𝑛 are pairwise independent if 

ℙ 𝑨𝒊 ∩ 𝑨𝒋 = ℙ 𝑨𝒊 ⋅ ℙ 𝑨𝒋  for all 𝒊, 𝒋

Pairwise Independence



Pairwise Independence vs. Mutual 
Independence

Roll two fair dice (one red one blue) independently

𝑅 =“red die is 3”

𝐵 =“blue die is 5”

𝑆 =“sum is 7”

How should we describe these events?



Pairwise Independence

𝑅, 𝐵, 𝑆 are pairwise independent

ℙ 𝑅 ∩ 𝐵  ? = ℙ 𝑅 ℙ(𝐵)
1

36
=

1

6
⋅

1

6
 Yes! (These are also independent by the problem statement)

ℙ 𝑅 ∩ 𝑆  ? = ℙ 𝑅 ℙ(𝑆)
1

36
? =

1

6
⋅

1

6
 Yes! 

ℙ 𝐵 ∩ 𝑆  ? = ℙ 𝐵 ℙ 𝑆
1

36
? =

1

6
⋅

1

6
 Yes!

Since all three pairs are 

independent, we say the random 

variables are pairwise independent.



Mutual Independence

𝑅, 𝐵, 𝑆 are not mutually independent. 

ℙ 𝑅 ∩ 𝐵 ∩ 𝑆 = 0; if the red die is 3, and blue die is 5 then the sum is 8 
(so it can’t be 7)

ℙ 𝑅 ℙ 𝐵 ℙ 𝑆 =
1

6

3
=

1

216
≠ 0



Checking Mutual Independence (1)

It’s not enough to check just ℙ(𝐴 ∩ 𝐵 ∩ 𝐶) either.

Roll a fair 8-sided die.

Let 𝐴 be {1,2,3,4}

𝐵 be {2,4,6,8}

𝐶 be {2,3,5,7}

ℙ 𝐴 ∩ 𝐵 ∩ 𝐶 = ℙ 2 =
1

8

ℙ 𝐴 ℙ 𝐵 ℙ 𝐶 =
1

2
⋅

1

2
⋅

1

2
=

1

8



Checking Mutual Independence (2)

It’s not enough to check just ℙ(𝐴 ∩ 𝐵 ∩ 𝐶) either.

Roll a fair 8-sided die.

Let 𝐴 be {1,2,3,4}

𝐵 be {2,4,6,8}

𝐶 be {2,3,5,7}

ℙ 𝐴 ∩ 𝐵 ∩ 𝐶 = ℙ 2 =
1

8

ℙ 𝐴 ℙ 𝐵 ℙ 𝐶 =
1

2
⋅

1

2
⋅

1

2
=

1

8

But 𝐵 and 𝐶 aren’t independent. Because there’s a subset that’s not 
independent, 𝐴, 𝐵, 𝐶 are not mutually independent.



Checking Mutual Independence (process)

To check mutual independence of events:

Check every subset.

To check pairwise independence of events:

Check every subset of size two.



Why Two Versions?

Pairwise independence is often all you need and is easier to design an 
experiment/code to achieve it.
“Pairwise independent hash functions” are a theoretical example.

Mutual Independence would let us vastly simplify the chain rule 
computation.

𝑃 𝐴1 ∩ ⋯ ∩ 𝐴𝑛 = ℙ 𝐴1 ⋅ ℙ 𝐴2 𝐴1 ⋅ ℙ 𝐴3 𝐴2 ∩ 𝐴1 ⋯ ℙ(𝐴𝑛|𝐴1 ∩ ⋯ ∩ 𝐴𝑛−1)

Simplifies to ℙ 𝐴1 ⋅ ℙ 𝐴2 ⋅ ℙ 𝐴3 ⋯ ℙ(𝐴𝑛)



Bayes in the real world



Application 1: Medical Tests

Helping Doctors and Patients Make Sense of Health Statistics

A researcher posed the following scenario to a group of 160 doctors:

Assume you conduct a disease screening using a standard test in a certain region. 
You know the following information about the people in this region:  

The probability that a person has the disease is 1% (prevalence) 

If a person has the disease, the probability that she tests positive is 90% (sensitivity) 

If a person does not have the disease, the probability that she nevertheless tests 
positive is 9% (false-positive rate) 

A person tests positive. She wants to know from you whether that means that she has 
the disease for sure, or what the chances are. What is the best answer? 

A. The probability that she has the disease is 

about 81%. 

B. Out of 10 people with a positive test, about 9 

have the disease. 

C. Out of 10 people with a positive test, about 1 

have the disease. 

D. The probability that she has the disease is about 

1%

https://journals.sagepub.com/doi/pdf/10.1111/j.1539-6053.2008.00033.x


Let’s do the calculation!

Let 𝐷 be “the patient has the disease”, 𝑇 be the test was positive.

ℙ 𝐷 𝑇 = ℙ 𝑇 𝐷 ⋅ ℙ 𝐷 /ℙ(𝑇)

 =
.9⋅.01

.99⋅.09+ .01⋅.9
≈ 0.092

Calculation tip: for Bayes’ Rule, you should see one of the terms on the 
bottom exactly match your numerator (if you’re using the LTP to 
calculate the probability on the bottom)



Pause for vocabulary

Physicians have words for just about everything

Let 𝐷 be has the disease; 𝑇 be test is positive

ℙ(𝐷) is “prevalence”

ℙ(𝑇|𝐷) is “sensitivity”
A ‘sensitive’ test is one which picks up on the disease when it’s there 
(high sensitivity -> few false negatives)

ℙ 𝑇 𝐷  is “specificity”

A ‘specific’ test is one that is positive specifically because of the disease, and for no 
other reason (high specificity -> few false positives)



How did the doctors do

C (about 1 in 10) was the correct answer.

Of the doctors surveyed, less than ¼ got it right (so worse than random 
guessing).

After the researcher taught them his calculation trick, more than 80% 
got it right.

 



One Weird Trick!

Calculation Trick: imagine you 
have a large population (not one 
person) and ask how many there 
are of false/true 
positives/negatives.



What about the real world?

When you’re older and have to do more routine medical tests, don’t get 
concerned (yet) when they ask to run another test.*

It’s usually fine.* 

*This is not medical advice, Robbie is not a physician. 



Optional: Careful Surveys

Another Real-World Bayes example



Application 2: An Imbalanced Survey

In 2014, a paper was published

“Do non-citizens vote in U.S. elections?”

This is a real paper (peer-reviewed). It claims that 

1. In a survey, about 4% (of a few hundred) of non-U.S.-citizens surveyed said 
they voted in the 2008 federal election (which isn’t allowed).

2. Those non-citizen voters voted heavily (estimate 80+%) for democrats.

3. “It is likely though by no means certain that John McCain would have won 
North Carolina were it not for the votes for Obama cast by non-citizens”

https://www.sciencedirect.com/science/article/pii/S0261379414000973?casa_token=x0yueI_NF5sAAAAA:xlXSf6_K6kO8e9as2QGtFpmZL2YH52OkqIzFFi3Vdf9OyvoP2fKRjtBcIu3fgeqlerQMapA-jCk
https://www.sciencedirect.com/science/article/pii/S0261379414000973?casa_token=x0yueI_NF5sAAAAA:xlXSf6_K6kO8e9as2QGtFpmZL2YH52OkqIzFFi3Vdf9OyvoP2fKRjtBcIu3fgeqlerQMapA-jCk
https://www.sciencedirect.com/science/article/pii/S0261379414000973?casa_token=x0yueI_NF5sAAAAA:xlXSf6_K6kO8e9as2QGtFpmZL2YH52OkqIzFFi3Vdf9OyvoP2fKRjtBcIu3fgeqlerQMapA-jCk


Application 2: What is this survey?

The “Cooperative Congressional Election Study” was run in 2008 and 
2010. 

It interviews about 20,000 people about how/whether they voted in 
federal elections. 

Two strange observations:

1. The noncitizens are a very small portion of those surveyed. Feels a 
little strange.

2. Those people…maybe accidentally admitted to a crime?



Application 2: Another Red Flag

A response paper (by different authors)

“The perils of cherry picking low frequency events in large sample 
surveys”

http://web.stanford.edu/group/bps/cgi-bin/wordpress/wp-content/uploads/2015/04/The-Perils-of-cherry-picking-low-frequency-events-in-surveys.pdf
http://web.stanford.edu/group/bps/cgi-bin/wordpress/wp-content/uploads/2015/04/The-Perils-of-cherry-picking-low-frequency-events-in-surveys.pdf
http://web.stanford.edu/group/bps/cgi-bin/wordpress/wp-content/uploads/2015/04/The-Perils-of-cherry-picking-low-frequency-events-in-surveys.pdf
http://web.stanford.edu/group/bps/cgi-bin/wordpress/wp-content/uploads/2015/04/The-Perils-of-cherry-picking-low-frequency-events-in-surveys.pdf


An Explanation

Suppose 0.1% of people check the wrong check-box on any individual 
question (independently)

Suppose you really interviewed 20,000 people, of whom 300 are really 
non-citizens (none of whom voted), and the rest are citizens, of whom 
70% voted. What is the probability someone appears to have voted

ℙ 𝑠𝑎𝑦 𝑉 𝑠𝑎𝑦 𝑁𝐶 =
ℙ 𝑠𝑎𝑦 𝑁𝐶 𝑠𝑎𝑦 𝑉 ⋅ℙ(𝑠𝑎𝑦 𝑉)

ℙ(𝑠𝑎𝑦 𝑁𝐶)
=

.001⋅.7

.999⋅(
300

20000
)+.001⋅(

19700

20000
)

≈

4.38%



Conclusion

The authors of the original paper did know about response error…

…and they have an appendix that argues the population of “non-citizen” 
voters isn’t distributed exactly like you’d expect.

But with it being such a small number of people, this isn’t surprising.

And even they admit response bias played more of a role than they 
initially thought.

Though they still think they found some evidence of non-citizens voting 
(but not enough to flip North Carolina anymore). 



Takeaways

When talking about rare events (rare diseases, rare prize-winning-
golden-tickets), think carefully about whether a test is really as 
informative as you think.
Do the explicit calculation

Intuition is easier if thinking about a large population of repeated tests, 
not just one.

Be careful of small subparts of large datasets

People from a large majority group (accidentally) clicking the wrong 
demographic information can “drown out” signal of a very small group.



Optional: Bayes Factor

A way to estimate Bayes calculations quickly



Bayes Factor
from 3Blue1Brown

Another Intuition Trick: from 3Blue1Brown

When you test positive, you (approximately) multiply the prior by the 
“Bayes Factor” (aka likelihood ratio)

sensitivity

false positive rate
=

1−𝐹𝑁𝑅

𝐹𝑃𝑅

https://www.youtube.com/watch?v=lG4VkPoG3ko


Bayes Factor (example)

Does it work?

Let’s try it…

Find 

prior ⋅
Sensitivity

𝐹𝑃𝑅



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Wonka Bars (Bayes Factor)

Bayes Factor

99.9

1

Prior: .1%

Product: 9.99, so about 10% 

About what Bayes Rule gets!



Application 1: Medical Tests (Bayes Factor)

Helping Doctors and Patients Make Sense of Health Statistics

A researcher posed the following scenario to a group of 160 doctors:

Assume you conduct a disease screening using a standard test in a certain region. 
You know the following information about the people in this region:  

The probability that a person has the disease is 1% (prevalence) 

If a person has the disease, the probability that she tests positive is 90% (sensitivity) 

If a person does not have the disease, the probability that she nevertheless tests 
positive is 9% (false-positive rate) 

A person tests positive. She wants to know from you whether that means that she has 
the disease for sure, or what the chances are. What is the best answer? 

A. The probability that she has the disease is 

about 81%. 

B. Out of 10 people with a positive test, about 9 

have the disease. 

C. Out of 10 people with a positive test, about 1 

have the disease. 

D. The probability that she has the disease is about 

1%

https://www.stat.berkeley.edu/~aldous/157/Papers/health_stats.pdf


Bayes Factor (Doctors)

What about with the doctors?

1% ⋅
90%

9%
= 10%

Again about right!



Caution

Multiplying by the Bayes Factor is an approximation

It gives you the exact numerator for Bayes, but the denominator is 
“the number of false positives if the prevalence (/prior) were 0”

When the prior is close to 0, this is a fine approximation!

But plug in a prior of 15% on the last slide, and we get 150% chance.



What about negative tests?

For negative tests, the Bayes Factor is

𝐹𝑁𝑅

specificity 

Specificity is (1 − false negative rate)
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