Independence | &y



Quiz 1 Logistics: tomorrow In section

You must go to your officially-registered section for the quiz.

We'll give you a reference sheet
No other notes allowed for quizzes (midterm/final will allow your own notes).

Bring an ID to the quiz.

The directions are here, in case you want to know what that will look like
(> Explanations not required (unless specified), but they can help us give partial credit.

combinations, permutations, etc. ok in final answer; summations with ... or  isn't
fully simplified. —_—



https://courses.cs.washington.edu/courses/cse312/26wi/exams/312-26wi-quiz1-coverpage.pdf

[~ Conditioning Tool: Bayes’ Rule



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars
until you find one, but that's expensive...you've got a better idea!

You have a test — a very precise scale you've bought.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you
only 1% of the time.

If you pick up a bar and it alerts, what is the probability you have a
golden ticket?



Willy Wonka

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you
only 1% of the time.

You pick up a bar and it alerts, what is the probability you have a golden
ticket?

. . . A. 0.1%

Which of these is closest to the right answer? 3 100
C. 50%
D. 90%
E. 99%

F. 99.9%




Conditioning (Wonka Bars)

Let S be the event that the Scale alerts you
Let G be the event your bar has a Golden ticket.
What conditional probabilities are each of these?

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert
you 99.9% of the time.

f the bar you weigh does not have a golden ticket, the scale will
(falsely) alert you only 1% of the time.

You pick up a bar and it alerts, what is the probability you have a
golden ticket?



Conditioning (labels)

Let S be the event that the Scale alerts you
Let G be the event your bar has a Golden ticket.
What conditional probabilities are each of these?

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars. | P(G) /
If the bar you weigh does have a golden ticket, the scale will alert P(SlG)g/

you %%.9% of the time.
If the bar you weigh does not have a golden ticket, the scale will P(S|G) \%
(falsely) alert you only @f the time.

You pick up a bar and it alerts, what is the probability you have a P(G|S)
golden ticket?




Reversing the Conditioning

All of our information conditions on whether G happens or not — does
your bar have a golden ticket or not?

But we're interested in the “reverse” conditioning. We know the scale
alerted us — we know the test is positive — but do we have a golden
ticket?



Bayes' Rule

Bayes’ Rule

P(B|A)P(A)

P(A|B) = —

P(B)



Bayes' Rule (2)

Bayes’ Rule

P(B|A)P(A)

P(A|B) = P(B)

What do we know about Wonka Bars?

P(GIS) = P(S|G) - P(G)

1) P(S)




Bayes' Rule (3)

Bayes’ Rule

P(B|A)P(A)

P(A|B) =

P(B)

What do we know about Wonka Bars?

999 -.001
P(G|S) =

L SPE)



Filling In

What's P(S)?

We'll use a trick called “the law of total probability”:
T T =
P(S) = P(S|G) - P(G) + P(S|G) - PG)

(0BT D0 LYy 999

=.010989

~——



Partition

Let Aq, Ay, ..., Ay, De a@rtitiogof Q.

A partition of a set S is a family of subsets Sy, S5, ..., S such that:
(C>8:n S; =@ forall i,j and
/S S US,U-US, =S.

.e. every element of Q is in exactly one of the A;.



Law of Total Probability

Law of Total Probability

Let A{, Ay, ..., A be a partition of ().
For any event E,

P(E) = ) P(EIA)P(A)

all i

Q, split into partition A4, A, A3
with event E inside.

A1 ‘ AZ ‘ A3




Why?

Al AZ

The Proof is actually pretty informative on what's going on.

2ani P(E|A)P(A;)

P(ENA;)
— Zalli P(A;)

— Zan i IP(E\nAi)
= P(E) |

The A; partition £, so E N A; partition E. Then we just add up those
probabilities.

Ability to add follows from the “countable additivity” axiom.

- ]P(:éll-) (definition of conditional probability)




Wonka Bars Answer

What do we know about Wonka Bars?

999 -.001

P(G1S) = —570989

Solving P(G|S) = —, i.e. about 0.0909.
— )\/-\,

Only about a 10% chance that the bar has the golden ticket!



Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.
W t m . n .t If the bar you weigh does have a golden ticket, the scale will alert
dil d INUTLE... you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will
(falsely) alert you only 1% of the time.

That doesn't fit with many of our guesses. What's going on?

Instead of saying “we tested one and got a positive” imagine we tested
1000. ABOUT how many bars of each type are there?

(about) 1 with a golden ticket 999 without. Let's say those are exactly right.
Let’s just say that one golden is truly found.

(about) ﬁ of the 999 without would be a positive. Let's say it's exactly 10.
N



Visually

Gold bar is the one (true) golden ticket bar.
Purple bars don't have a ticket and tested
negative.

Red bars don't have a ticket, but tested
positive.

The test is, in a sense, doing really well.
It's almost always right.

The problem is it's also the case that the
correct answer is almost always “no.”



Updating Your Intuition (Take 1)

¢ Take 1: The test is actually good and has VASTLY increased our belief
that there IS a golden ticket when you get a positive result.

It we told you “your job is to find a Wonka Bar with a golden ticket”
without the test, you have 1/1000 chance, with the test, you have (about)
a 1/11 chance. That's (almost) 100 times better!

SN—— A

This is actually a huge improvement!



Updating Your Intuition (Take 2)

@ Take 2: Humans are really bad at intuitively understanding very large
or very small numbers.

When | hear "99% chance”, "99.9% chance”, “99.99% chance” they all go

into my brain as “well that's basically guaranteed” And then | forget how
many 9's there actually were.

But the number of 9s matters because they end up “cancelling” with the
“‘number of 9's” in the population that's truly negative.



Updating Your Intuition (Take 3)

¢4 Take 3: View tests as updating your beliefs, not as revealing the truth.

Bayes' Rule says that IP(B|A) has a factor of P(B) In it. You have to
translate “The test saystere’s a golden ticket” to “the test says you

should increase your estimate of the chances that you have a golden
ticket.”

A test takes you from your “prior” beliefs of the probability to your
“posterior” beliefs.



I~ Independence of Events



Definition of Independence

We've calculated conditional probabilities.

Sometimes conditioning — getting some partial information about the
outcome — doesn't actually change the probability.

We already saw an example like this...



ed die 6
conditioned o
sum/ 1/6

Red die 6 E

conditioned on
sum 9 1/4

Sum 7 conditioned
onreddie 6 1/6

D1=1

Red die 6 has probability
1/6 before or after
conditioning on sum 7.

(1,2)

(2,2)
(3.2)
(4.2)
(5,2)
(6,2)

(1,3)

(2,3)
(3,3)
(4,3)
(5,3)
(6,3)

(1,4)
(2,4)
(3,4)
(4.,4)
(5,:4)
(6,4)

L A

2,5)
3,5)
0)
0)
6,5)

L A

-

2,0)
3,6)
,0)
,0)
6,6)



Independence (definition) P@ B)= WA\
Independence ?( Dﬁl
Two events A, B are independent if (ﬁ )P @)

P(A N B) = P(4) - P(B)

You'll sometimes see this called “statistical independence” to emphasize
that we're talking about probabilities (not, say, physical interactions).

It A, B both have non-zero probability then

P(A N B) = P(A)P(B) & P(4|B) = P(4)  P(B|A) = P(B)
\ 7




Examples

We ftlip a fair coin three times. Each flip is independent. (both in the

statistical independence sense and in the “doesn’t affect the next one”
sense).

} :Is E = {HHH} independent of F ="at most two heads"?
N —

Are A ="the first flip is heads” and B ="the second flip is tails”
independent?



Examples (answers)

s E = {HHH} independent of F ="at most two heads"?
P(E N F) =0 (can’t have all three heads and at most two heads).
P(E) = 1/8, P(F) = 7/8, P(E N F) # P(E)P(F).

B SO #F R

Are A ="the first flip is heads” and B ="the second flip is tails”
independent?

P(A N B) =_2/8 (uniform measure, and two of eight outcomes meet
both A and B.

P(A) = 1/2, P(B) = 1/2; = = - - . These are independent!

<



Hey Wait

| said “the flips are independent” why aren't E, F independent?

“the flips are independent” means events like “the first flip is <blah>"
are independent of events like “the second flip is <blah>"

But if you have an event that involves both flip one and two that might
not be independent of an event involving flip one or two.



Mutual Exclusion and independence

Two of these statements are true, one is false. Explain to each other
which ones are true, and find a counter-example to the false one.

1. If A, B both have nonzero probability and they are mutually exclusive,
then they cannot be independent.

2. 1f A has zero probability, then A, B are independent (for any B).

3. If two events are independent, then at least one has nonzero
probability.



[~ Conditional Independence



Conditional Independence (definition)

We say A and B are conditionally independent on C if

P(A N B|C) = P(AIC) - P(B|C)

..e. if you condition on C, they are independent.



Conditional Independence Example

You have two coins. Coin A is fair, coin B comes up heads with
probability 0.85.

You will roll a (fair) die, if the result is odd flip coin A twice
(independently); if the result is even flip coin B twice (independently)

Let C; be the event “the first flip is heads”, C, be the event “the second
flip is heads”, O be the event “the die was odd”

Are C; and C, independent? Are they independent conditioned on 07



(Unconditioned) Independence

P(Cl) = P(O)P(Cll()) + P(0)P(C1|0)

= —+— 0.85 =.675
22

P(C,) = .675 (the same formula works)
P(C,)P(C,) =.6752 = .455625

P(C, N C,) = P(O)P(C, N C,|0) + P(D)P(C; N C,|0)
1 1

= .~ + 852 = 48625
2 4

Those aren’t the same! They're not independent!

Intuition: seeing a head gives you information — information that it's
more likely you got the biased coin and so the next head is more likely.



Conditional Independence (computation)

P(C,|0) = 1/2
P(C,|0) = 1/2

P(C; N C,|0) === =1/4

N | =

P(C1|0)P(C,|0) = P(C; N C,|0)

Yes! C; and C, are conditionally independent, conditioned on O.



Takeaway

Read a problem carefully — when we say “these steps are independent
of each other” about some part of a sequential process, it's usually
“conditioned on all prior steps, these steps are conditionally
independent of each other.”

Those conditional steps are usually dependent (without conditioning)
because they might give you information about which branch you took.



‘ Chain Rule



Chain Rule (definition)

We defined conditional probability as: P(A|B) = P[(P“gf)
Which means P(A N B) = [P(AlB)P(B)\ __—

\/\/\/
Chain Rule

P(A;NA,N--NA,)

=P(AplA1 NN Ay_q) - P(Ap_1[A1 NN Ap_y) - P(A2]|A1) - P(47)




Chain Rule Example

Shuffle a standard deck of 52 cards (so every ordering is equally likely).
Let A be the event “The top card is a K"

Let B be the event “the second cardisa ] &

Let C be the event “the third cardisa 5 #

Whatis P(ANB N C)?
Use the chain rule!

P(A) - P(B|A) - P(C|A N B)
1 . 1 . 1
52 51 50




[~ More Bayes Practice



A contrived example

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

You will flip a fair coin; if it's heads, you'll draw a marble (uniformly) from
your left pocket, if it's tails, you'll draw a marble (uniformly) from your
right pocket.

Let B be you draw a blue marble. Let T be the coin is tails.
What is P(B|T) what is P(T|B) ?



P(RNH) =3/8 P(RNT)=1/6

P(BNH)=1/8

Updated Sequential Processes

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

For sequential processes with probability,
at each step multiply by

=3 P(next step |all N prior N steps)

P(BNT)=1/3




Updated Sequential Processes (answer)

You have three red marbles and one blue marble in your left pocket,
and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

For sequential processes with probability,

, at each step multiply by
=3 P(next step |all N prior N steps)
P(R N H) = 3/8 P(RNT)=1/6 . . _ 1 lzﬂ
P(BNH) =1/8 P(BNT)=1/3 P(BlT) - 2/3' IP)(B) - 8 T 3 24




Flipping the conditioning

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

Pause, what's your intuition?
s this probability

A. less than %,

B. equal to %

C. greater than %



Flipping the conditioning (marbles)

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

Pause, what's your intuition?
s this probability

A. less than %,

B. equal to ¥

C. greater than %

The right (tails) pocket is far more likely to produce a blue marble if picked
than the left (heads) pocket is. Seems like P(T|B) should be greater than 5.



Flipping the conditioning (marbles, answer)

You have three red marbles and one blue marble in your left pocket,
What about P(T|B)? and one red marble and two blue marbles in your right pocket.

if it's heads, you'll draw a marble (uniformly) from your left pocket,

if it's tails, you'll draw a marble (uniformly) from your right pocket.

Bayes’ Rule says:

P(B|T)P(T)
P(T|B) = =22
21
=32z —g/11



’ The Technical Stuff



Proof of Bayes’ Rule

P(ANB)
P(B)

Now, imagining we get A N B by conditioning on A, we should get a
numerator of P(B|A) - P(A)

__ P(B|A)-P(4)
- P(B)

P(A|B) =

by definition of conditional probability

As required.



A Technical Note

After you condition on an event, what remains is a probability space.

With B playing the role of the sample space,
P(w|B) playing the role of the probability measure.

All the axioms are satisfied (it's a good exercise to check)

That means any theorem we write down has a version where you
condition everything on B.



An Example

Bayes Theorem still works in a probability space where we've already
conditioned on S.

P(B|[4 N S])-P(AIS)

P(A[[B N S]) = P(B|S)

Complementary law still works in a probability space where we've
already conditioned on S

P(A|C) =1 —P(A|C)



A Quick Technical Remark

| often see students write things like
P([AIB]IC)
This Is not a thing.

You probably want P(A|[B N C])

A|B isn't an event — it's describing an event and telling you to restrict
the sample space. So you can't ask for the probability of that
conditioned on something else.



[~ Setting the stage: Random Variables



Implicitly defining Q

We've often skipped an explicit definition of Q.

Often |Q] is infinite, so we really couldn’t write it out (even in principle).

How would that happen?

Flip a fair coin (independently each time) until you see your first tails.
what is the probability that you see at least 3 heads?



An infinite process.

1
P(HHH|HH) =

1
IP)(H) = E

1
IP)(T) = E

P(T) = 1/2

P(HT) = 1/4

P(HHT) = 1/8

Q is infinite.
A sequential process is also going
to be infinite...

But the tree is “self-similar”

From every node, the children look
identical (H with probability 2,
continue pattern; T to a leaf with
probability %)



Finding IP(at least 3 heads); method 1

Method 1: infinite sum.

Q includes H'T for every i. Every such outcome has probability 1/2¢+1
What outcomes are in our event?

1

0o i+1 _ 24 _ 1
2i=3 1/27" = 1-1/2 8

Infinite geometric series, where common ratio is between —1 and 1 has
first term
closed form

1-ratio



Finding IP(at least 3 heads); method 2

Method 2:

Calculate the complement

P(at most 2 heads) = % + % +%

[P(at least 3 heads)=1 — G + % + %) — %
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