

Conditioning (Wonka Bars)

Let S be the event that the Scale alerts you

Let G be the event your bar has a Golden ticket.

What conditional probabilities are each of these?

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh **does** have a golden ticket, the scale will alert you 99.9% of the time.

If the bar you weigh **does not** have a golden ticket, the scale will (falsely) alert you only 1% of the time.

You pick up a bar and it alerts, what is the probability you have a golden ticket?

5

LTP and Bayes

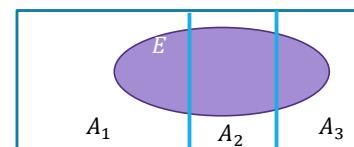
Law of Total Probability

Let A_1, A_2, \dots, A_k be a **partition** of Ω .

For any event E ,

$$\mathbb{P}(E) = \sum_{\text{all } i} \mathbb{P}(E|A_i) \mathbb{P}(A_i)$$

Ω , split into partition A_1, A_2, A_3 with event E inside.



Bayes' Rule

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \mathbb{P}(A)}{\mathbb{P}(B)}$$

55

Independence

Independence

Two events A, B are independent if
 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

You'll sometimes see this called "statistical independence" to emphasize that we're talking about probabilities (not, say, physical interactions).

If A, B both have non-zero probability then

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$$

56

Conditional Independence Example

You have two coins. Coin A is fair, coin B comes up heads with probability 0.85.

You will roll a (fair) die, if the result is odd flip coin A twice (independently); if the result is even flip coin B twice (independently)

Let C_1 be the event "the first flip is heads", C_2 be the event "the second flip is heads", O be the event "the die was odd"

Are C_1 and C_2 independent? Are they independent conditioned on O ?

31