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Last Time

A sample space Ω is the set of all possible 

outcomes of an experiment.

Sample Space

An event 𝐸 ⊆ Ω is a subset of possible 

outcomes (i.e. a subset of 𝛀)

Event

A probability is a number between 0 and 1 describing 

how likely a particular outcome is.

Probability



Cards Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space

Probability Measure

Event

Probability



Cards Example (Solution 1)

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: { 𝑥, 𝑦 : 𝑥 and 𝑦 are different cards }

Probability Measure: uniform measure ℙ 𝜔 =
1

52⋅51

Event: all pairs with equal values

Probability: 
13⋅𝑃 4,2

52⋅51



Cards Example (Solution 2)

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure: uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability: 
13⋅𝑃 4,2 ⋅50!

52!

A lot of cancellation here!



Takeaway

There’s often information you “don’t need” in your sample space.

It won’t give you the wrong answer.

But it sometimes makes for extra work/a harder counting problem,

Good indication: you cancelled A LOT of stuff that was common in the 
numerator and denominator.



A few notes about events and samples spaces

• If you’re dealing with a situation where you may be able to use a  
uniform probability space, make sure to set up the sample space in a 
way that every outcome is equally likely.

•Try not overcomplicate the sample space – only include the information 
that you need in it. 

•Be consistent in your event and sample space:
•If order doesn’t matter in one, it doesn’t matter in the other.

•If you only think about the first two cards in one, you only think about the first two 
cards in the other. 

•Formally, this means when you define an event, you make sure it is a subset of the 
sample space! (The “types” have to match for that assertion to be true).



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if ?

ℙ 𝐸 = 1 if and only if ?



Some Quick Observations (answers)

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if an event can’t happen.

ℙ 𝐸 = 1 if and only if an event is guaranteed (every outcome outside 
𝐸 has probability 0). 



Conditioning



Conditioning Intuition

You roll a fair red die and a fair blue die (without letting the dice affect 
each other).

But they fell off the table, and you can’t see the results.

I can see the results – I tell you the sum of the two dice is 4. 

What’s the probability that the red die shows a 5, conditioned on 
knowing the sum is 4?



Conditioning Intuition (2)

You roll a fair red die and a fair blue die (without letting the dice affect 
each other).

But they fell off the table, and you can’t see the results.

I can see the results – I tell you the sum of the two dice is 4. 

What’s the probability that the red die shows a 5, conditioned on 
knowing the sum is 4?

It’s 0. 

Without the conditioning it was 1/6.



Restrict the Sample Space

When I told you “the sum of the dice is 4” we restricted the sample 
space. 

The only remaining outcomes are { 1,3 , 2,2 , 3,1 } out of 
1,2,3,4,5,6 × {1,2,3,4,5,6}.

Outside the (restricted) sample space, the probability is going to 
become 0. What about the probabilities inside?



Conditional Probability (formally)

Just like with the formal definition of probability, this is pretty abstract.
It does accurately reflect what happens in the real world.

If ℙ 𝐵 = 0, we can’t condition on it (it can’t happen! There’s no point in 
defining probabilities where we know 𝐵 has not happened) – ℙ(𝐴|𝐵) is 
undefined when ℙ 𝐵 = 0.

For an event 𝐵, with ℙ 𝐵 > 0,
the “Probability of 𝐴 conditioned on 𝑩” is 

ℙ 𝑨 𝑩 =
ℙ 𝑨 ∩ 𝑩

ℙ 𝑩

Conditional Probability



Conditioning…

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning…A|B

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐵)

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning…A|B, Solution

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

ℙ(𝐴|𝐵)

ℙ 𝐴 ∩ 𝐵 = ℙ ∅ = 0
ℙ 𝐵 = 3/36

𝑃 𝐴 𝐵 =
0

3/36



Conditioning…A|C

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning…A|C Solution

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)

ℙ 𝐴 ∩ 𝐶 = 1/36
ℙ 𝐶 = 6/36

𝑃 𝐴 𝐶 =
1/36

6/36

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning Practice

Red die 6 
conditioned on 
sum 7

Red die 6 
conditioned on 
sum 9

Sum 7 conditioned 
on red die 6

.
Take a few minutes to work on 

this with the people around you! 

(also on your handout)

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning Practice A|B

A ~ Red die 6 

B ~ Sum is 7

ℙ 𝐴 𝐵

= ℙ(𝐴 ∩ 𝐵)/𝑃(𝐵)

=

= 1/6

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning Practice A|C

A ~ Red die 6 

C ~ Sum is 9

ℙ 𝐴 𝐶

= ℙ(𝐴 ∩ 𝐶)/𝑃(𝐶)

=

= 1/4

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning Practice B|A

B ~ Sum is 7 

A ~ Red die is 6

ℙ 𝐵 𝐴

= ℙ(𝐵 ∩ 𝐴)/𝑃(𝐴)

=

= 1/6

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Conditioning Practice (answers)

Red die 6 
conditioned on 
sum 7 1/6

Red die 6 
conditioned on 
sum 9 1/4

Sum 7 conditioned 
on red die 6 1/6

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)



Does Order Matter?

Are ℙ(𝐴|𝐵) and ℙ(𝐵|𝐴) the same?



Order Does Matter!

No! ℙ(𝐴|𝐵) and ℙ(𝐵|𝐴) are different quantities.

ℙ(“traffic on the highway” | “it’s snowing”) is close to 1

ℙ(“it’s snowing” | “traffic on the highway”) is much smaller; there many 
other times when there is traffic on the highway

It’s a lot like implications – order can matter a lot!

(but there are some 𝐴, 𝐵 where the conditioning doesn’t make a 
difference)



Conditioning Tool: Bayes’ Rule



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Willy Wonka

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

You pick up a bar and it alerts, what is the probability you have a golden 
ticket?

Which of these is closest to the right answer?
A. 0.1%

B. 10%

C. 50%

D. 90%

E. 99%

F. 99.9%

Fill out the poll everywhere so 

Robbie knows how long to explain

Go to pollev.com/robbie



Conditioning (Wonka Bars)

Let 𝑆 be the event that the Scale alerts you

Let 𝐺 be the event your bar has a Golden ticket. 

What conditional probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

You pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Conditioning (labels)

Let 𝑆 be the event that the Scale alerts you

Let 𝐺 be the event your bar has a Golden ticket. 

What conditional probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

You pick up a bar and it alerts, what is the probability you have a 
golden ticket?

ℙ(𝐺)

ℙ(𝑆|𝐺)

ℙ 𝑆 ҧ𝐺

ℙ(𝐺|𝑆)



Reversing the Conditioning

All of our information conditions on whether 𝐺 happens or not – does 
your bar have a golden ticket or not?

But we’re interested in the “reverse” conditioning. We know the scale 
alerted us – we know the test is positive – but do we have a golden 
ticket?



Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule



Bayes’ Rule (2)

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule

What do we know about Wonka Bars?

ℙ(𝐺|𝑆) =
ℙ 𝑆 𝐺 ⋅ ℙ(𝐺)

ℙ(𝑆)



Bayes’ Rule (3)

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule

What do we know about Wonka Bars?

ℙ(𝐺|𝑆) =
.999 ⋅ .001

ℙ(𝑆)



Filling In

What’s ℙ(𝑆)?

We’ll use a trick called “the law of total probability”:

ℙ 𝑆 = ℙ 𝑆 𝐺 ⋅ ℙ 𝐺 + ℙ 𝑆 ҧ𝐺 ⋅ ℙ ҧ𝐺

      = 0.999 ⋅ .001 + .01 ⋅ .999

     = .010989



Partition

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

A partition of a set 𝑆 is a family of subsets 𝑆1, 𝑆2, … , 𝑆𝑘 such that:

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖, 𝑗 and

𝑆1 ∪ 𝑆2 ∪ ⋯ ∪ 𝑆𝑘 = 𝑆. 

i.e. every element of Ω is in exactly one of the 𝐴𝑖 .



Law of Total Probability

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

For any event 𝑬, 

ℙ 𝑬 =  ෍

𝐚𝐥𝐥 𝒊

ℙ 𝑬|𝑨𝒊 ℙ(𝑨𝒊)

Law of Total Probability

𝐴1 𝐴2
𝐴3

𝐸

Ω, split into partition 𝐴1, 𝐴2, 𝐴3 

with event 𝐸 inside.



Why?

The Proof is actually pretty informative on what’s going on. 

σall 𝑖 ℙ 𝐸|𝐴𝑖 ℙ(𝐴𝑖)

= σall 𝑖
ℙ 𝐸∩𝐴𝑖

ℙ 𝐴𝑖
⋅ ℙ(𝐴𝑖) (definition of conditional probability)

= σall 𝑖 ℙ 𝐸 ∩ 𝐴𝑖

= ℙ(𝐸)

The 𝐴𝑖 partition Ω, so 𝐸 ∩ 𝐴𝑖 partition 𝐸. Then we just add up those 
probabilities. 
Ability to add follows from the “countable additivity” axiom.

𝐴1 𝐴2
𝐴3

𝐸



Wonka Bars Answer

What do we know about Wonka Bars?

ℙ(𝐺|𝑆) =
.999 ⋅ .001

.010989

Solving ℙ 𝐺 𝑆 =
1

11
, i.e. about 0.0909.

Only about a 10% chance that the bar has the golden ticket!



Wait a minute…

That doesn’t fit with many of our guesses. What’s going on?

Instead of saying “we tested one and got a positive” imagine we tested 
1000. ABOUT how many bars of each type are there?

(about) 1 with a golden ticket 999 without. Let’s say those are exactly right.

Let’s just say that one golden is truly found.

(about) 1% of the 999 without would be a positive. Let’s say it’s exactly 10.

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 

you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 

(falsely) alert you only 1% of the time. 



Visually

Gold bar is the one (true) golden ticket bar.

Purple bars don’t have a ticket and tested 

negative.

Red bars don’t have a ticket, but tested 

positive.

The test is, in a sense, doing really well. 

It’s almost always right.

The problem is it’s also the case that the 

correct answer is almost always “no.”



Updating Your Intuition (Take 1)

     Take 1: The test is actually good and has VASTLY increased our belief 
that there IS a golden ticket when you get a positive result.

If we told you “your job is to find a Wonka Bar with a golden ticket” 
without the test, you have 1/1000 chance, with the test, you have (about) 
a 1/11 chance. That’s (almost) 100 times better!

This is actually a huge improvement! 



Updating Your Intuition (Take 2)

     Take 2: Humans are really bad at intuitively understanding very large 
or very small numbers.

When I hear “99% chance”, “99.9% chance”, “99.99% chance” they all go 
into my brain as “well that’s basically guaranteed” And then I forget how 
many 9’s there actually were.

But the number of 9s matters because they end up “cancelling” with the 
“number of 9’s” in the population that’s truly negative. We’ll talk about 
this a little more on Friday in the applications.



Updating Your Intuition (Take 3)

     Take 3: View tests as updating your beliefs, not as revealing the truth.

Bayes’ Rule says that ℙ(𝐵|𝐴) has a factor of ℙ(𝐵) in it. You have to 
translate “The test says there’s a golden ticket” to “the test says you 
should increase your estimate of the chances that you have a golden 
ticket.”

A test takes you from your “prior” beliefs of the probability to your 
“posterior” beliefs.



More Bayes Practice



A contrived example

You have three red marbles and one blue marble in your left pocket, 
and one red marble and two blue marbles in your right pocket.

You will flip a fair coin; if it’s heads, you’ll draw a marble (uniformly) from 
your left pocket, if it’s tails, you’ll draw a marble (uniformly) from your 
right pocket.

Let 𝐵 be you draw a blue marble. Let 𝑇 be the coin is tails.

What is ℙ(𝐵|𝑇) what is ℙ(𝑇|𝐵) ?



Updated Sequential Processes
You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Updated Sequential Processes (answer)
You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

ℙ 𝐵 𝑇 = 2/3; ℙ 𝐵 =
1

8
+

1

3
=

11

24

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.



Flipping the conditioning (marbles)

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

The right (tails) pocket is far more likely to produce a blue marble if picked 

than the left (heads) pocket is. Seems like ℙ(𝑇|𝐵) should be greater than ½.



Flipping the conditioning (marbles, answer)

What about ℙ(𝑇|𝐵)?

Bayes’ Rule says:

ℙ 𝑇 𝐵 =
ℙ(𝐵|𝑇)ℙ 𝑇

ℙ 𝐵

=
2

3
⋅
1

2

11/24
= 8/11

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.



The Technical Stuff



Proof of Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
 by definition of conditional probability

Now, imagining we get 𝐴 ∩ 𝐵 by conditioning on 𝐴, we should get a 
numerator of ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

=
ℙ(𝐵|𝐴)⋅ℙ 𝐴

ℙ 𝐵

As required. 



A Technical Note

After you condition on an event, what remains is a probability space.

With 𝐵 playing the role of the sample space, 

ℙ(𝜔|𝐵) playing the role of the probability measure.

All the axioms are satisfied (it’s a good exercise to check)

That means any theorem we write down has a version where you 
condition everything on 𝐵. 



An Example

Bayes Theorem still works in a probability space where we’ve already 
conditioned on 𝑆.

ℙ 𝐴 [𝐵 ∩ 𝑆] =
ℙ 𝐵 [𝐴 ∩ 𝑆] ⋅ℙ 𝐴 𝑆

ℙ(𝐵|𝑆)



A Quick Technical Remark

I often see students write things like 

ℙ([𝐴 𝐵] 𝐶) 

This is not a thing. 

You probably want ℙ(𝐴| 𝐵 ∩ 𝐶 )

𝐴|𝐵 isn’t an event – it’s describing an event and telling you to restrict 
the sample space. So you can’t ask for the probability of that 
conditioned on something else.
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