

Conditioning Practice

Red die 6
conditioned on
sum 7

Red die 6
conditioned on
sum 9

Sum 7 conditioned
on red die 6

	D2=1	D2=2	D2=3	D2=4	D2=5	D2=6
D1=1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
D1=2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
D1=3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
D1=4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
D1=5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
D1=6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

59

Conditional Probability

Conditional Probability

For an event B , with $\mathbb{P}(B) > 0$,
the “Probability of A conditioned on B ” is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Just like with the formal definition of probability, this is pretty abstract.
It does accurately reflect what happens in the real world.

If $\mathbb{P}(B) = 0$, we can’t condition on it (it can’t happen! There’s no point in defining probabilities where we know B has not happened) – $\mathbb{P}(A|B)$ is **undefined** when $\mathbb{P}(B) = 0$.

60

Another Example

Suppose you shuffle a deck of cards so any arrangement is equally likely. What is the probability that the top two cards have the same value?

Sample Space

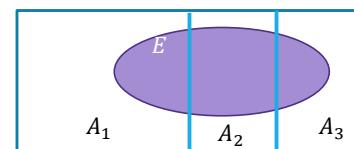
Probability Measure

Event

Probability

3

LTP and Bayes


Law of Total Probability

Let A_1, A_2, \dots, A_k be a **partition** of Ω .

For any event E ,

$$\mathbb{P}(E) = \sum_{\text{all } i} \mathbb{P}(E|A_i) \mathbb{P}(A_i)$$

Ω , split into partition A_1, A_2, A_3 with event E inside.

Bayes' Rule

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

61