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Principle of Inclusion-Exclusion

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|



Example

How many length 5 strings over the alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

For what 𝐴, 𝐵, 𝐶 do we want |𝐴 ∪ 𝐵 ∪ 𝐶|?



In general:

𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 =

𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛

− 𝐴1 ∩ 𝐴2 + 𝐴1 ∩ 𝐴3 + ⋯ + 𝐴1 ∩ 𝐴𝑛 + 𝐴2 ∩ 𝐴3 + ⋯ + 𝐴𝑛−1 ∩ 𝐴𝑛

+( 𝐴1 ∩ 𝐴2 ∩ 𝐴3 + ⋯ + 𝐴𝑛−2 ∩ 𝐴𝑛−1 ∩ 𝐴𝑛 )

− …

+ −1 𝑛+1|𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛|

Add the individual sets, subtract all pairwise intersections, add all three-wise 
intersections, subtract all four-wise intersections,…, [add/subtract] the 𝑛-wise 
intersection.



Example

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}

𝐵 = {length 5 strings that contain exactly 1 ‘b’s}

𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 = 5
2

⋅ 253 (need to choose which “spots” are ‘a’ and remaining string)

𝐵 = 5
1

⋅ 254

𝐶 = 255

How many length 5 strings over the 

alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s



Example

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}

𝐵 = {length 5 strings that contain exactly 1 ‘b’s}

𝐶 = {length 5 strings that contain no ‘x’s }

How many length 5 strings over the 

alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

𝐴 = 5
2

⋅ 253 

𝐵 = 5
1

⋅ 253 

𝐶 = 255 

𝐴 ∩ 𝐵 = 5
2

⋅ 3
1

⋅ 242 (choose ‘a’ spots, ‘b’ spot, remaining chars)

𝐴 ∩ 𝐶 = 5
2

⋅ 243 (choose ‘a’ spots, remaining [non-’x’] chars)

𝐵 ∩ 𝐶 = 5
1

⋅ 244 

𝐴 ∩ 𝐵 ∩ 𝐶 = 5
2

⋅ 3
1

⋅ 232 (choose ‘a’ spots, ‘b’ spot, remaining [non-’x’] chars)



Example

𝐴 = 5
2

⋅ 253 

𝐵 = 5
1

⋅ 254 

𝐶 = 255 

𝐴 ∩ 𝐵 = 5
2

⋅ 3
1

⋅ 242

𝐴 ∩ 𝐶 = 5
2

⋅ 243

𝐵 ∩ 𝐶 = 5
1

⋅ 244 

𝐴 ∩ 𝐵 ∩ 𝐶 = 5
2

⋅ 3
1

⋅ 232

How many length 5 strings over the 

alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

𝐴 ∪ 𝐵 ∪ 𝐶 = 
                  = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐴 ∩ 𝐶 − 𝐵 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

                  =
5
2

⋅ 253+ 
5
1

⋅ 254+255 − 𝐴 ∩ 𝐵 − 𝐴 ∩ 𝐶 − 𝐵 ∩ 𝐶 + 𝐴 ∩ 𝐵 ∩ 𝐶

                  =11,875,000 − 𝐴 ∩ 𝐵 − 𝐴 ∩ 𝐶 − 𝐵 ∩ 𝐶 + 𝐴 ∩ 𝐵 ∩ 𝐶

                  = 11,875,000 − 5
2

⋅ 3
1

⋅ 242 − 5
2

⋅ 243 − 5
1

⋅ 244 + 𝐴 ∩ 𝐵 ∩ 𝐶

                  = 11,875,000 − 1,814,400 + 𝐴 ∩ 𝐵 ∩ 𝐶
                 = 10,060,600 + |𝐴 ∩ 𝐵 ∩ 𝐶|

                  = 10,060,600 + 5
2

⋅ 3
1

⋅ 232

                  = 10,060,600 + 15,870
                  = 10,076,470



Practical tips

Give yourself clear definitions of 𝐴, 𝐵, 𝐶.

Make a table of all the formulas you need before you start actually 
calculating.

Calculate “size-by-size” and incorporate into the total.

Basic check: If (in an intermediate step) you ever:

1. Get a negative value

2. Get a value greater than the prior max by adding (after all the single sets)

3. Get a value less than the prior min by subtracting (after all the pairwise 
intersections)

Then something has gone wrong.



The Binomial Theorem



Binomial Theorem

In high school you probably memorized 

𝑥 + 𝑦 2 = 𝑥2 + 2𝑥𝑦 + 𝑦2

And 𝑥 + 𝑦 3 = 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3 

The Binomial Theorem tells us what happens for every 𝑛:

𝑥 + 𝑦 𝑛 = ෍

𝑖=0

𝑛
𝑛

𝑖
𝑥𝑖𝑦𝑛−𝑖

The Binomial Theorem



Some intuition

Intuition: Every monomial on the right-hand-side has either 𝑥 or 𝑦 from 
each of the terms on the left. 

How many copies of 𝑥𝑖𝑦𝑛−𝑖 do you get? Well how many ways are there 
to choose 𝑖 𝑥’s and 𝑛 − 𝑖 𝑦’s? 𝑛

𝑖
.

Formal proof? Induction!

𝑥 + 𝑦 𝑛 = ෍

𝑖=0

𝑛
𝑛

𝑖
𝑥𝑖𝑦𝑛−𝑖

The Binomial Theorem



So What?

Well…if you saw it before, now you have a better understanding now of why 
it’s true. 

There are also a few cute applications of the binomial theorem to proving 
other theorems (usually by plugging in numbers for 𝑥 and 𝑦) – you’ll do one 
on HW2.

For example, set 𝑥 = 1 and 𝑦 = 1 then 

2𝑛 = 1 + 1 𝑛 = σ𝑖=0
𝑛 𝑛

𝑖
1𝑖1𝑛−𝑖 = σ𝑖=0

𝑛 𝑛
𝑖

.

i.e. if you sum up binomial coefficients, you get 2𝑛. Exercise: reprove this 
equation (directly) with a combinatorial proof (where have we seen 2𝑛 
recently?)



The Pigeonhole Principle



Pigeonhole Principle

If you have 5 pigeons, and place them into 4 holes, then…

At least two pigeons are in the same hole. 



Pigeonhole Principle (2)

If you have 5 pigeons, and place them into 4 holes, then…

At least two pigeons are in the same hole.

It might be more than two. 



Strong Pigeonhole Principle

If you have 𝑛 pigeons and 𝑘 pigeonholes, then there is at least one 

pigeonhole that has at least 
𝑛

𝑘
 pigeons.

𝑎  is the “ceiling” of 𝑎 (it means always round up, 1.1 = 2, 1 = 1).



An example

If you have to take 10 classes, and have 3 quarters to take them in, 
then…

Pigeons: The classes to take

Pigeonholes: The quarter

Mapping: Which class you take the quarter in.

Applying the (generalized) pigeonhole principle, there is at least one 

quarter where you take at least 
10

3
= 4 courses.



Practical Tips (PHP)

When the pigeonhole principle is the right tool, it’s usually the first thing 
you’d think of or the absolute last thing you’d think of. 

For really tricky ones, we’ll warn you in advance that it’s the right 
method (you’ll see one in the section handout).

When applying the principle, say:
What are the pigeons

What are the pigeonholes

How do you map from pigeons to pigeonholes

Look for – a set you’re trying to divide into groups, where collisions 
would help you somehow.



Our last counting rule



Counting Donuts

You’re going to buy one-dozen donuts (i.e., 12 donuts)

There are chocolate, strawberry, coconut, blueberry, and lemon (i.e. five 
types)

How many different donut boxes can you buy?

Consider two boxes the same if they contain the same number of every 
kind of donut (order doesn’t matter)



Donuts, Divided

You’re going to buy one-dozen donuts (i.e., 12 donuts)

There are chocolate, strawberry, coconut, blueberry, and lemon (i.e. five 
types)

Put donuts in order by type, then put dividers between the types.

Counting the number of ways to place dividers instead.



Explanation 1

Think of it as a string.

There are 12 + (5 − 1) characters.

But 12 are the “donut” character (identical) and 4 are the “divider” 
character (identical). 

So?

16!

12!4!

i.e., 16
4



Placing Dividers

Place a divider – how many possible locations are there?

13 – before donut 1, before 2, …, before donut 12, after donut 12.



Placing Dividers (1)

Place a divider – how many possible locations are there?

13 – before donut 1, before 2, …, before donut 12, after donut 12.

Place the second divider, how many possible locations are there?

14 – one of the previous spots was split (“before” and “after” the last 
divider)



Placing Dividers (2)

Place a divider – how many possible locations are there?

13 – before donut 1, before 2, …, before donut 12, after donut 12.

Place the second divider, how many possible locations are there?

14 – one of the previous spots was split (“before” and “after” the first divider)

In general, placing divider 𝑖 has 12 + 𝑖 possible locations. 



Placing Dividers (3)

We had 12 donuts, how many dividers do we need? 

4 (to divide into 5 groups)

Count so far: 13 ⋅ 14 ⋅ 15 ⋅ 16

Are we done?



Placing Dividers (4)

Count so far: 13 ⋅ 14 ⋅ 15 ⋅ 16

This count treats all dividers as different – they’re not! Divide by 4!.

For 𝑛 donuts of 𝑘 types

𝑛+1 𝑛+2 ⋯ 𝑛+𝑘−1

(𝑘−1)!

That’s a combination! 𝑛+𝑘−1
𝑘−1



Wrapping Up

𝑛+𝑘−1
𝑘−1

We wrote down a “string” consisting of 𝑛          and 𝑘 − 1  

𝑛 + 𝑘 − 1 characters, 𝑛 “donuts” are identical, 𝑘 − 1 “dividers” are 
identical, so divide by the rearrangements (like we did for SEATTLE). 



In General

The counting technique we did is often called “stars and bars” 
using a “star” instead of a donut shape, and calling the dividers “bars”

To pick 𝑛 objects from 𝑘 groups (where order doesn’t matter and every 

element of each group is indistinguishable), use the formula:

𝑛 + 𝑘 − 1

𝑘 − 1



We’ve seen lots of ways to count

Sum rule (split into disjoint sets)

Product rule (use a sequential process)

Combinations (order doesn’t matter)

Permutations (order does matter)

Principle of Inclusion-Exclusion

Complementary Counting

 “Stars and Bars” 𝑛+𝑘−1
𝑘−1

Niche Rules (useful in very specific circumstances) 
Binomial Theorem

Pigeonhole Principle



Which Tool Do I Use?
Pick 𝒌 things from 

universe of 𝒏.

Repetition is NOT 

allowed

Repetition IS allowed

Order does NOT 

matter

Combinations 
𝑛

𝑘
=

𝑛!

𝑘! 𝑛 − 𝑘 !

Stars and Bars

𝑛 + 𝑘 − 1

𝑛 − 1
Be careful which is 𝑛 and which is 𝑘. 

This is 𝑘 donuts from 𝑛 flavors.

Order does matter Permutations

𝑃 𝑛, 𝑘 =
𝑛!

𝑛 − 𝑘 !

Product rule

𝑛 ⋅ 𝑛 ⋯ 𝑛 = 𝑛𝑘

This is NOT foolproof! Sometimes you need a twist on the formula; 

sometimes it’s a completely different tool. But a sign where to start.



Extra Practice 



Practice 

How do we know which rule to apply? 

With practice you can pick out patterns for which ones might be 
plausible.

But if as you’re working you realize things are getting out of control, put 
it aside and try something different.



Cards

A “standard” deck of cards has 52 cards. Each card has a suit
diamonds , 

hearts , 

clubs ♧, 

spades 

and a value (Ace,2,3,4,5,6,7,8,9,10,Jack,Queen, King). 

A “5-card-hand” is a set of 5 cards

How many five-card “flushes” are there? – a flush is a hand of cards all 
of the same suit. 



Cards

How many five-card “flushes” are there? – a flush is a hand of cards all 
of the same suit. 

Way 1: How can I describe a flush? Which suit it is, and which values:

4
1

⋅ 13
5



Cards

Way 2: Pretend order matters. The first card can be anything, 

After that, you’ll have 12 options (the remaining cards of the suit), then 
11, …

Then divide by 5!, since order isn’t supposed to matter.

52⋅12⋅11⋅10⋅9

5!

This is the same number as what we got on the last slide!



A Solution with a Problem

You wish to count the number of 5-card hands with at least 3 aces.

There are 4 Aces (and 48 non aces)

4
3

⋅ 49
2

Choose the three aces. Then of the 49 remaining cards (the last ace is 
allowed as well, because we’re allowed to have all 4) 

What’s wrong with this calculation? 

What’s the right answer?



A Solution with a Problem

For a hand, there should be exactly one set of choices in the sequential 
process that gets us there.

{A♧, A , A } {A , K }

And 

{A♧, A , A }, {A , K }

Are two different choices of the process, but they lead to the same 
hand!



A Solution with a Problem

We could count exactly which hands appear more than once, and how 
many times each appears and compensate for it. 

See the extra slides at the end. 

An easier solution is to try again…

The problem was trying to account for the “at least” – come up with 
disjoint sets and count separately.

4
3

⋅ 48
2

+ 4
4

⋅ 48
1

 

If there are exactly 3 aces, we choose which 3 of the 4, then choose 
which 2 cards among the 48 non-aces. If all 4 aces appear, then one of 
the remaining 48 cards finishes the hand. Applying the sum rule 
completes the calculation.



Takeaway

It’s hard to count sets where one of the conditions is “at least X”

You usually need to break those conditions up into disjoint sets and use 
the sum rule.



Another Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas. 

You need to pick at most 2 apples and at least 1 banana. How many sets 
of fruit can you choose?



Another Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas. 

You need to pick at most 2 apples and at least 1 banana. How many sets 
of fruit can you choose?

Divide into cases based on number of apples:

0 apples: 1 to 8 bananas possible (8 options)

1 apple: 1 to 7 bananas possible (7 options)

2 apples: 1 to 6 bananas possible (6 options) 

21 total (by sum rule)



Another Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and 
bananas.  You need to pick at most 2 apples and at least 1 banana. How 
many sets of fruit can you choose?

Pick out your first banana. Problem is now to pick 7 fruits (at most 2 
apples, allowed to take apples oranges and bananas)

Ignore apple restriction, and subtract off when too many apples:

Ignore restriction: 7+3−1
3−1

≥ 3 apples, 4+3−1
3−1

 (choose 3 apples first, pick 4 remaining)

Total: 9
2

− 6
2

= 36 − 15 = 21



Takeaways

For donut-counting style problems with “twists”, it sometimes helps to 
“just throw the first few in the box” to get a problem that is exactly in 
the donut-counting framework.

When you can do a problem two very different ways and get the same 
answer, you get much more confident in the answer.



Which Tool Do I Use?
Pick 𝒌 things from 

universe of 𝒏.
Repetition is NOT 

allowed

Repetition IS allowed

Order does NOT 

matter

Combinations 
𝑛

𝑘
=

𝑛!

𝑘! 𝑛 − 𝑘 !

Stars and Bars

𝑛 + 𝑘 − 1

𝑛 − 1
Be careful which is 𝑛 and which is 𝑘. 

This is 𝑘 donuts from 𝑛 flavors.

Order does matter Permutations

𝑃 𝑛, 𝑘 =
𝑛!

𝑛 − 𝑘 !

Product rule

𝑛 ⋅ 𝑛 ⋯ 𝑛 = 𝑛𝑘

This is NOT foolproof! Sometimes you need a twist on the formula; 

sometimes it’s a completely different tool. But a sign where to start.



Fixing The Overcounting



A Solution with a Problem

You wish to count the number of 5-card hands with at least 3 aces.

There are 4 Aces (and 48 non aces)

4
3

⋅ 49
2

Choose the three aces. Then of the 49 remaining cards (the last ace is 
allowed as well, because we’re allowed to have all 4) 

What’s wrong with this calculation? 



When do we overcount?

If there are exactly 4 Aces in the hand, then we count the hand 4 
different times (once for each ace as an “extra” one:

{A♧, A , A }, {A , ?}

{A♧, A , A }, {A , ?}

{A♧, A , A }, {A , ?}

{A , A , A }, {A♧, ?}



How much do we overcount?

There are 48 such hands (one for every card that could be “?” on the 
last slide)

So we’ve counted 3 ⋅ 48 processes that shouldn’t count.

That would give a corrected total of 4
3

⋅ 49
2

− 3 ⋅ 48

This is the same number as we got during lecture with our other 
counting.
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