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Two Niche Rules

Binomial Theorem
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Our last big Rule
Counting Practice



Principle of Inclusion-Exclusion

For three sets:

[AuBucl=)All+IBl+Icl-[lAnBl-1Bncl-[lAncll+[lanBnc]]




Example

How many length 5 strings over the alphabet {a, b, c, ..., z} contain:
Exactly 2 ‘a's OR

Exactly 1'b" OR

NoO X's

For what 4, B,C do we want |AU B U C|?



In general:

|JA;UA, U--UA,| =
[Aq| + [Az| + - + [Ay]
—(lA; N Azl + 1A N Ag| + -+ [A NAx [+ Ay N Az + -+ Ay NAL])
+(l[A;nA; NAs| + -+ A2 NAp_1 NAL])

+(-D™"A, nA, NN A,

Add the individual sets, subtract all pairwise intersections, add all three-wise
intersections, subtract all four-wise intersections,..., [add/subtract] the n-wise
Intersection.



How many length 5 strings over the
Example alphabet {a, b, c, ..., z} contain:

Exactly 2 ‘a’s OR

Exactly 1'b" OR

No 'X's

ength 5 strings that contain exactly 2 ‘a’s}

ength 5 strings that contain exactly 1 'b’s}

a T
|l
N e e

ength 5 strings that contain no x’s }

Al = (3) - 25% (need to choose which “spots” are ‘a’ and remaining string)
Bl = ()25
C| = 25°




How many length 5 strings over the
Example alphabet {a, b, c, ..., z} contain:

Exactly 2 ‘a’'s OR

Exactly 1'b" OR

No 'X’s
A = {length 5 strings that contain exactly 2 ‘a’s} Al = 35) - 25°
. . B o ) 2 >
B = {length 5 strings that contain exactly 1'b’s} Cl = 2(512 >
C={

ength 5 strings that contain no 'x’s }

- (i) - 24 (choose ‘a’ spots, ‘b’ spot, remaining chars)

()
ANC| = (g) . 243 (choose ‘a’ spots, remaining [non-x"] chars)
(5) - 24*




How many length 5 strings over the
Example alphabet {a, b, c, ..., z} contain:
Exactly 2 ‘a’s OR
Exactly 1'b" OR

A :(g)'ZSS No ‘X's
Bl = (3)-25"
C|l = 255 JAUBUC| =

=|Al+ Bl +ICI—|AnB|—|AnC|—|BNC|+]|AnBNC|
=(5) - 25%+ (5) - 25*+255 —|[ANB| — [AnC| - [BNC|+|AnBNC]|
=11,875,000 — [ANB| — |[ANC|—|BNC|+|AnBNC]

— (5Y . (3) . 2
ANB|= (2) (1) 24 = 11,875,000 - (3) - (3)- 242 = (3) - 243 = (%) - 24* + |An B N (]
_(5) 43 = 11,875,000 — 1,814,400 + [AN B N C|
AncCl=(3)- 24 ~ 10,060,600 + |[AN B N C|
BNCl= (i) . 244 = 10,060,600 + (3) - () - 232
= 10,060,600 + 15,870
= 10,076,470

AnBncCl=(3) () 232



Practical tips

Give yourself clear definitions of A4, B, C.

Make a table of all the formulas you need before you start actually
calculating.

Calculate “size-by-size"” and incorporate into the total.

Basic check: If (in an intermediate step) you ever:

1. Get a negative value

2. Get a value greater than the prior max by adding (after all the single sets)

3. Get a value less than the prior min by subtracting (after all the pairwise
Intersections)

Then something has gone wrong.



~ ' The Binomial Theorem



Binomial Theorem

N\

N
gv(x+y)2=x2+ xy + y?

And (x + )3 = x3 + 3x%y + 3xy? + y3
T — %

In high school gj probably memorized

The Binomial Theorem tells us what happens for every n:

The Binomial Theorem




Some intuition (25%)(%“@ Q\uv@

The Binomial Theorem

n

wrm=3()

Intuition: Every monomial on the right-hand-side has either x or y from
each of the terms on the left.

How many copies of x'y™* do you get? Well how many ways are there
to choose i x's and n — i y's? (7).

Formal proof? Induction!



So What?

\{\/eltl...if you saw it before, now you have a better understanding now of why
it's true.

There are also a few cute applications of the binomial theorem to proving

other theorems (usually by plugging in numbers for x and y) — you'll do one
on HW2.

For example, set x =1 and y = 1 then

2=+ 1" = ?zo(’})lilm Yo(}):

l.e. if you sum uF binomial coefficents, you get 2™. Exercise: reprove this
y

equation (directly) with a combinatorial prodt (where have we seen 2™
recently?)



=~ The Pigeonhole Principle



Pigeonhole Principle

If you have 5 pigeons, and place them into 4 holes, then...

At least two pigeons are in the same hole.

g /




Pigeonhole Principle (2)

If you have 5 pigeons, and place them into 4 holes, then...

At least two pigeons are in the same hole.

Itmigh%—be—mmﬁhan two.




Strong Pigeonhole Principle

f you have n_pigeons and k pigeonholes, then there is at least one
pigeonhole that has at Ieams

N —~—

|a] is the “ceiling” of a (it means always round up, [1.1] = 2, [1] = 1).
—_— S



An example

It you have to take 10 cIasses and have 3 quarters to take them in,
then... —

Pigeons: The classes to take

e ——

Pigeonholes: The quarter

(_oMapping: Which class you take the quarter in.

Applying the (generalized) pigeonhole principle, there is at least one

quarter where you take at least [%} =@urses.




Practical Tips (PHP)

When the pigeonhole principle is the right tool, it's usually the first thing
you'd think of or the absolute last thing you'd think of.

For really tricky ones, we'll warn you in advance that it's the right
method (you'll see one in the section handout).

When applying the principle, say:

What are the pigeons

What are the pigeonholes

How do you map from pigeons to pigeonholes

Look for — a set you're trying to divide into groups, where collisions
would help you somehow. — &)




[~ Our last counting rule



Counting Donuts

You're going to buy one-dozen donuts (i.e., 12 donuts)

~_~—— 7

There are chocolate, strawberry, coconut, blueberry, and lemon (i.e. five
types)

How many different donut boxes can you buy?

Consider two boxes the same if they contain the same number of every
kind of donut (order doesn’'t matter)

000000000000



Donuts, Divided

You're going to buy one-dozen donuts (i.e., 12 donuts)

There are chocolate, strawberry, coconut, blueberry, and lemon (i.e. five
types)

Put donuts in order by type, then put dividers between the types.
Counting the number of ways to place dividers instead.

00loooloooooolo



Explanation 1

Think of it as a string.
There are 12 + (5 — 1) characters.

But 12 are the “donut” character (identical) and 4 are the “divider”
character (identical).

So?
L> 16!
124!

e, (%)
N\~



Placing Dividers

O000000000O0O0

Place a divider — how many possible locations are there?
13 — before donut 1, before 2, ..., before donut 12, after donut 12.




Placing Dividers (1)

000000000000

Place a divider — how many possible locations are there?
13 — before donut 1, before 2, ..., before donut 12, after donut 12.

Place the second divider, how many possible locations are there?

14 — one of the previous spots was split (“before” and “after” the last
divider)



Placing Dividers (2)

000000000000

Place a divider — how many possible locations are there?
13 — before donut 1, before 2, ..., before donut 12, after donut 12.

Place the second divider, how many possible locations are there?
14 — one of the previous spots was split ("before” and "after” the first divider)

In general, placing divider i has 12 + i possible locations.



Placing Dividers (3)

O 00000000 0|00

We had 12 donuts, how many dividers do we need?

4 (to divide into 5 groups)
Countso far; 13-14-15-16

Are we done?



Placing Dividers (4)

ooloooloooooolo

Countsofar:13-14-15-16
This count treats all dividers as different — they're not! Divide by 4!.

For n donuts of k types \(6. 6 -(L/\. ‘5 }6(

(n+1)(n+2)--m+k—1) %
=K 12!

(k—1)!

+k—-1

That's a combination! ("}*



Wrapping Up

oolooolooooololo

("es

We wrote down a “string” consisting of n @ and k —1
ical, k

n + k — 1 characters, n “donuts” are ident — 1 “dividers” are
identical, so divide by the rearrangements (like we did for SEATTLE).



In General O D  ‘” O \ \ (

L—

To pick n objects from k groups (where order doesn’t matter and every
element of each group is indistinguishable), use the formula:

n+k—1
k—1

The counting technique we did is often called “stars and bars”
using a “star” instead of a donut shape, and calling the dividers “bars”



We've seen lots of ways to count

fum rule (split into disjoint sets)

Product rule (use a sequential process)
Combinations (order doesn’t matter)
Permutations (order does matter)
[ Principle of Inclusion-Exclusion
Kﬁomplementary Counting

"Stars and Bars” ("t 1) :]

Niche Rules (useful in very specific circumstances)
Binomial Theorem
Pigeonhole Principle



Which Tool Do | Use?

Pick k things from Repetition is NOT Repetition IS allowed
universe of n. allowed

Order does NOT Combinations Stars and Bars

matter (n)_ n! n+k—1
k)  kl(n—k)! ( n—1 )

Be careful which is n and which is k.
This is k donuts from n flavors.

Order does matter Permutations Product rule
n' n-NMN-"N= nk
P n, k — \

This is NOT foolproof! Sometimes you need a twist on the formula;
sometimes it's a completely different tool. But a sign where to start.



‘ Extra Practice



Practice

How do we know which rule to apply?

With practice you can pick out patterns for which ones might be
plausible.

But if as you're working you realize things are getting out of control, put
it aside and try something different.



Cards

A "standard” deck of cards has 52 cards. Each card has a suit
diamonds ¢, —

hearts ©,

clubs e,
spades @

and a value @,4,5,6,7,8,9,10,Jacl<,Queen, King).

A “S-card-hand”is a set of 5 cardé
\/V_\

of the same suit.
\_—/

f—low many five-card “flushes” are there? — a flush is a hand of cards all



L |3
Cards D ( (\
\ S
How many five-card “flushes” are there? — a flush is a hand of cards all
of the same suit.

Way 1. How can | describe a flush? Which suit it is, and which values:

(;L) ' (153)

—

53 L2 {01
)




Cards

Way 2: Pretend order matters. The first card can be anything,

After that, you'll have 12 options (the remaining cards of the suit), then
1, ...

Then divide by 5!, since order isn't supposed to matter.

52-12-11-10-9
5!

This is the same number as what we got on the last slide!



A Solution with a Problem

Eou wish to count the number of 5-card hands with at least 3 aces.
There are 4 Aces (and 48 non aces)

—_——
4 49
O
Choose the three aces. Then of the 49 remaining cards (the last ace is
allowed as well, because we're allowed to have all 4)

What's wrong with this calculation?
What's the right answer?



A Solution with a Problem

For a hand, there should be exactly one set of choices in the sequential
process that gets us there.

AD, A®, Ae} (AW, K &)
And

(A, A®, AW}, (AS, K #)

v :
Are two different choices of the process, but they lead to the same

hand!




A Solution with a Problem

We could count exactly which hands appear more than once, and how
many times each appears and compensate for it.

See the extra slides at the end.
An easier solution is to try again...

The problem was trying to account for the “at least” — come up with
disjoint sets and count separately.

(/4 48 4 48

(3)'(2)+ (4)'(1)
_If there are exactly 3 aces,we choose which 3 of the 4, then choose
which 2 cards among the 48 non-aces. If all 4 aces appear, then one of

the remaining 48 cards finishes the hand. Applying tﬁe sum rule
completes the calculation.




Takeaway

It's hard to count sets where one of the conditions is “at least X”

You usually need to break those conditions up into disjoint sets and use
the sum rule.



Another Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and
bananas.

You need to pick at most 2 apples and at least 1 banana. How many sets
of fruit can you choose?



Another Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and
bananas.

You need to pick at most 2 apples and at least 1 banana. How many sets
of fruit can you choose?

Divide into cases based on number of apples:
0 apples: 1 to 8 bananas possible (8 options)
1 apple: 1 to 7 bananas possible (7 options)

2 apples: 1 to 6 bananas possible (6 options)
21 total (by sum rule)



Another Problem

You have to choose 8 pieces of fruit. There are apples, oranges, and
bananas. You need to pick at most 2 apples and at least 1 banana. How
many sets of fruit can you choose?

Pick out your first banana. Problem is now to pick 7 fruits (at most 2
apples, allowed to take apples oranges and bananas)

lgnore apple restriction, and subtract off when too many apples:

ignore restriction: (71°7*

(4-+3 1

> 3 apples, (choose 3 apples first, pick 4 remaining)

Total: (J) — (3) =36 —15 =21



Takeaways

For donut-counting style problems with “twists”, it sometimes helps to
“Just throw the first few in the box” to get a problem that is exactly in
the donut-counting framework.

When you can do a problem two very different ways and get the same
answer, you get much more confident in the answer.



Which Tool Do | Use?

Pick k things from Repetition is NOT Repetition IS allowed
universe of n. allowed

Order does NOT Combinations Stars and Bars

matter (n)_ n! n+k—1
k)  kl(n—k)! ( n—1 )

Be careful which is n and which is k.
This is k donuts from n flavors.

Order does matter Permutations Product rule
n' n-NMN-"N= nk
P(n k) =
(n, k) (n—k)!

This is NOT foolproof! Sometimes you need a twist on the formula;
sometimes it's a completely different tool. But a sign where to start.



I Fixing The Overcounting



A Solution with a Problem

You wish to count the number of 5-card hands with at least 3 aces.

There are 4 Aces (and 48 non aces)
4 49
(3) ' (2 )
Choose the three aces. Then of the 49 remaining cards (the last ace is
allowed as well, because we're allowed to have all 4)

What's wrong with this calculation?



When do we overcount?

If there are exactly 4 Aces in the hand, then we count the hand 4
different times (once for each ace as an “extra” one:

{A@, A®, A}, (A, 7]
{A@, A®, A} (A, 7]
{A@, A®, Ae¢}, {A®, 7}
{Av, A®, Ae} {A®, 7}



How much do we overcount?

There are 48 such hands (one for every card that could be “?" on the
last slide)

So we've counted 3 - 48 processes that shouldn't count.

That would give a corrected total of () - (%)) — 3 - 48

This is the same number as we got during lecture with our other
counting.
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