
Even More Counting CSE 312 Winter 26

Lecture 3



Announcements

Office hours start today! Visit now before others start on the homework. 

Also, please start on the homework early.



Outline

So Far
Sum and Product Rules

Combinations (order doesn’t matter) and Permutations (order does matter)

Introduce ordering or distinction and remove it to make calculations easier

This Time
Some Proofs by counting two ways

Principle of Inclusion-Exclusion



Overcounting

How many anagrams are there of SEATTLE

(an anagram is a rearrangement of letters). 

It’s not 7! That counts SEATTLE and SEATTLE as different things!

I swapped the Es (or maybe the Ts)



Overcounting (answer)

How many anagrams are there of SEATTLE

Pretend the order of the Es (and Ts) relative to each other matter (that 
SEATTLE and SEATTLE are different)

How many arrangements of SEATTLE? 7!

How have we overcounted? Es relative to each other and Ts relative to 
each other 2! ⋅ 2!

Final answer 
7!

2!⋅2!



Overcounting (example 2)

How many anagrams are there of GODOGGY?



Overcounting (answer 2)

How many anagrams are there of GODOGGY?

7!

2!3!

One more piece of notation – “multinomial coefficient”

7
2,3

is alternate notation for 
7!

2!3!
. 

In general: 𝑛
𝑘1,𝑘2,…,𝑘ℓ

=
𝑛!

𝑘1!⋅𝑘2!⋯𝑘ℓ!

Popular notation among mathematicians.



Combination Facts



Some Facts about combinations

Symmetry of combinations: 𝑛
𝑘

= 𝑛
𝑛−𝑘

Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘



Two Proofs of Symmetry

Proof 1: By algebra

𝑛
𝑘

=
𝑛!

𝑘! 𝑛−𝑘 !

=
𝑛!

𝑛−𝑘 !𝑘!

= 𝑛
𝑛−𝑘

Definition of Combination

Algebra (commutativity of multiplication)

Definition of Combination



Two Proofs of Symmetry (analysis)

Wasn’t that a great proof. 

Airtight. No disputing it.

Got to say “commutativity of multiplication.”

But…do you know why? Can you feel why it’s true?



Combinatorial Proof of Symmetry

Suppose you have 𝑛 people, and need to choose 𝑘 people to be on your 
team. We will count the number of possible teams two different ways. 

Way 1: We choose the 𝑘 people to be on the team. Since order doesn’t 
matter (you’re on the team or not), there are 𝑛

𝑘
 possible teams.

Way 2: We choose the 𝑛 − 𝑘 people to NOT be on the team. Everyone 
else is on it. Since order again doesn’t matter, there are 𝑛

𝑛−𝑘
 possible 

ways to choose the team. 

Since we’re counting the same thing, the numbers must be equal.
So 𝑛

𝑘
= 𝑛

𝑛−𝑘
.



Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

 
algebraic proof



Pascal’s Rule: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

 
combinatorial proof

You and 𝑛 − 1 other people are trying out for a 𝑘 person team. How 
many possible teams are there?

Way 1: There are 𝑛 people total, of which we’re choosing 𝑘 (and since it’s 
a team order doesn’t matter) 𝑛

𝑘
.

Way 2: There are two types of teams. Those for which you make the team, 
and those for which you don’t. 
If you do make the team, then 𝑘 − 1 of the other 𝑛 − 1 also make it. 

If you don’t make the team, 𝑘 of the other 𝑛 − 1 also make it.

Overall, by sum rule, 𝑛−1
𝑘−1

+ 𝑛−1
𝑘

.

Since we’re computing the same number two different ways, they must 

be equal. So: 𝑛
𝑘

= 𝑛−1
𝑘−1

+ 𝑛−1
𝑘



Takeaways

Formulas for factorial, permutations, combinations.

A useful trick for counting is to pretend order matters, then account for 
the overcounting at the end (by dividing out repetitions)

When trying to prove facts about counting, try to have each side of the 
equation count the same thing.
Much more fun and much more informative than just churning through algebra.



Principle of Inclusion-Exclusion



Example

How many length 5 strings over the alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

For what 𝐴, 𝐵, 𝐶 do we want |𝐴 ∪ 𝐵 ∪ 𝐶|?



Principle of Inclusion-Exclusion (2 sets)

The sum rule says when 𝐴 and 𝐵 are disjoint (no intersection), then  
𝐴 ∪ 𝐵 = 𝐴 + |𝐵|.

What about when 𝐴 and 𝐵 aren’t disjoint? 

For two sets:

𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

𝐴 𝐵𝐴 ∩ 𝐵



Principle of Inclusion-Exclusion (3 sets)

For three sets:

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐵 ∩ 𝐶 − 𝐴 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|



In general:

𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 =

 𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛

    − 𝐴1 ∩ 𝐴2 + 𝐴1 ∩ 𝐴3 + ⋯ + 𝐴1 ∩ 𝐴𝑛 + 𝐴2 ∩ 𝐴3 + ⋯ + 𝐴𝑛−1 ∩ 𝐴𝑛

    +( 𝐴1 ∩ 𝐴2 ∩ 𝐴3 + ⋯ + 𝐴𝑛−2 ∩ 𝐴𝑛−1 ∩ 𝐴𝑛 )

    − …

+ −1 𝑛+1|𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛|

Add the individual sets, subtract all pairwise intersections, add all three-wise 
intersections, subtract all four-wise intersections,…, [add/subtract] the 𝑛-wise 
intersection.



PIE Example

How many length 5 strings over the alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

For what 𝐴, 𝐵, 𝐶 do we want |𝐴 ∪ 𝐵 ∪ 𝐶|?



PIE Example (sets)

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}

𝐵 = {length 5 strings that contain exactly 1 ‘b’s}

𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 = 5
2

⋅ 253 (need to choose which “spots” are ‘a’ and remaining string)

𝐵 = 5
1

⋅ 254 

𝐶 = 255

How many length 5 strings over the 

alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s



Intersections
How many length 5 strings over the 

alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

𝐴 = {length 5 strings that contain exactly 2 ‘a’s}

𝐵 = {length 5 strings that contain exactly 1 ‘b’s}

𝐶 = {length 5 strings that contain no ‘x’s }

𝐴 = 5
2

⋅ 253 

𝐵 = 5
1

⋅ 253 

𝐶 = 255 

𝐴 ∩ 𝐵 = 5
2

⋅ 3
1

⋅ 242 (choose ‘a’ spots, ‘b’ spot, remaining chars)

𝐴 ∩ 𝐶 = 5
2

⋅ 243 (choose ‘a’ spots, remaining [non-’x’] chars)

𝐵 ∩ 𝐶 = 5
1

⋅ 244 

𝐴 ∩ 𝐵 ∩ 𝐶 = 5
2

⋅ 3
1

⋅ 232 (choose ‘a’ spots, ‘b’ spot, remaining [non-’x’] chars)



Putting it together

𝐴 = 5
2

⋅ 253 

𝐵 = 5
1

⋅ 254 

𝐶 = 255 

𝐴 ∩ 𝐵 = 5
2

⋅ 3
1

⋅ 242

𝐴 ∩ 𝐶 = 5
2

⋅ 243

𝐵 ∩ 𝐶 = 5
1

⋅ 244 

𝐴 ∩ 𝐵 ∩ 𝐶 = 5
2

⋅ 3
1

⋅ 232

How many length 5 strings over the 

alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} contain:

Exactly 2 ‘a’s OR

Exactly 1 ‘b’ OR

No ‘x’s

𝐴 ∪ 𝐵 ∪ 𝐶 = 
                  = 𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐴 ∩ 𝐶 − 𝐵 ∩ 𝐶 + |𝐴 ∩ 𝐵 ∩ 𝐶|

                  =
5
2

⋅ 253+ 
5
1

⋅ 254+255 − 𝐴 ∩ 𝐵 − 𝐴 ∩ 𝐶 − 𝐵 ∩ 𝐶 + 𝐴 ∩ 𝐵 ∩ 𝐶

                  =11,875,000 − 𝐴 ∩ 𝐵 − 𝐴 ∩ 𝐶 − 𝐵 ∩ 𝐶 + 𝐴 ∩ 𝐵 ∩ 𝐶

                  = 11,875,000 − 5
2

⋅ 3
1

⋅ 242 − 5
2

⋅ 243 − 5
1

⋅ 244 + 𝐴 ∩ 𝐵 ∩ 𝐶

                  = 11,875,000 − 1,814,400 + 𝐴 ∩ 𝐵 ∩ 𝐶
                 = 10,060,600 + |𝐴 ∩ 𝐵 ∩ 𝐶|

                  = 10,060,600 + 5
2

⋅ 3
1

⋅ 232

                  = 10,060,600 + 15,870
                  = 10,076,470



Practical tips (PIE)

Give yourself clear definitions of 𝐴, 𝐵, 𝐶.

Make a table of all the formulas you need before you start actually 
calculating.

Calculate “size-by-size” and incorporate into the total.

Basic check: If (in an intermediate step) you ever:

1. Get a negative value

2. Get a value greater than the prior max by adding (after all the single sets)

3. Get a value less than the prior min by subtracting (after all the pairwise 
intersections)

Then something has gone wrong.



The Binomial Theorem



Binomial Theorem

In high school you probably memorized 

𝑥 + 𝑦 2 = 𝑥2 + 2𝑥𝑦 + 𝑦2

And 𝑥 + 𝑦 3 = 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3 

The Binomial Theorem tells us what happens for every 𝑛:

𝑥 + 𝑦 𝑛 = ෍

𝑖=0

𝑛
𝑛

𝑖
𝑥𝑖𝑦𝑛−𝑖

The Binomial Theorem



Some intuition

Intuition: Every monomial on the right-hand-side has either 𝑥 or 𝑦 from 
each of the terms on the left. 

How many copies of 𝑥𝑖𝑦𝑛−𝑖 do you get? Well how many ways are there 
to choose 𝑖 𝑥’s and 𝑛 − 𝑖 𝑦’s? 𝑛

𝑖
.

Formal proof? Induction!

𝑥 + 𝑦 𝑛 = ෍

𝑖=0

𝑛
𝑛

𝑖
𝑥𝑖𝑦𝑛−𝑖

The Binomial Theorem



So What?

Well…if you saw it before, now you have a better understanding now of why 
it’s true. 

There are also a few cute applications of the binomial theorem to proving 
other theorems (usually by plugging in numbers for 𝑥 and 𝑦) – you’ll do one 
on HW2.

For example, set 𝑥 = 1 and 𝑦 = 1 then 

2𝑛 = 1 + 1 𝑛 = σ𝑖=0
𝑛 𝑛

𝑖
1𝑖1𝑛−𝑖 = σ𝑖=0

𝑛 𝑛
𝑖

.

i.e. if you sum up binomial coefficients, you get 2𝑛. Exercise: reprove this 
equation (directly) with a combinatorial proof (where have we seen 2𝑛 
recently?)



The Pigeonhole Principle



Pigeonhole Principle

If you have 5 pigeons, and place them into 4 holes, then…

At least two pigeons are in the same hole. 



Pigeonhole Principle (2)

If you have 5 pigeons, and place them into 4 holes, then…

At least two pigeons are in the same hole.

It might be more than two. 



Strong Pigeonhole Principle

If you have 𝑛 pigeons and 𝑘 pigeonholes, then there is at least one 

pigeonhole that has at least 
𝑛

𝑘
 pigeons.

𝑎  is the “ceiling” of 𝑎 (it means always round up, 1.1 = 2, 1 = 1).



An example

If you have to take 10 classes, and have 3 quarters to take them in, 
then…

Pigeons: The classes to take

Pigeonholes: The quarter

Mapping: Which class you take the quarter in.

Applying the (generalized) pigeonhole principle, there is at least one 

quarter where you take at least 
10

3
= 4 courses.



Practical Tips (PHP)

When the pigeonhole principle is the right tool, it’s usually the first thing 
you’d think of or the absolute last thing you’d think of. 

For really tricky ones, we’ll warn you in advance that it’s the right 
method (you’ll see one in the section handout).

When applying the principle, say:
What are the pigeons

What are the pigeonholes

How do you map from pigeons to pigeonholes

Look for – a set you’re trying to divide into groups, where collisions 
would help you somehow.
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