Even More Counting | &2



Announcements

Office hours start today! Visit now before others start on the homework.
Also, please start on the homework early.
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Outline

So Far
Sum and Product Rules

Combinations (order doesn’t matter) and Permutations (order does matter)
Introduce ordering or distinction and remove it to make calculations easier

This Time

Some Proofs by counting two ways
Principle of Inclusion-Exclusion



Overcounting

How many anagrams are there of SEATTLE

(an anagram is a rearrangement of letters).

It's not 7! That counts SEATTLE and SEATTLE as different things!
| swapped the Es (or maybe the Ts)




Overcounting (answer) gAﬁ”{’EL§

How many anagrams are there of SEATTLE

Pretend the order of the Es (and Ts) relative to each other matter (that
SEATTLE and SEATTLE are different

How many arrangements7!

How have we overcounted? Es relative to each other and Ts relative to
each other 2! - 2!

— 7l

Final ans



Overcounting (example 2)

How many anagrams are there of GODOGGY?
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Overcounting (answer 2)
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LG

How many anagrams are there of GODOGGY?

_;‘

One more piece of notation — “multinomial coefficient”
\_’___//\_/

71
Lﬁs 2 ; ) s alternate notation for —
% 131"
) —Spt
k1, kz ..... kp kil'ko!lkp!

/‘)

Popular notation among mathematicians.

In general



’ Combination Facts



Some Facts about combinations

Symmetry of combinations: () = (")

<

7
Fscal s Rule: B =G+ ()
- [\/\J




|
Two Proofs of Symmetry </\/ _ O

Proof 1: By algebra
(nz:) Definition of Combination

n!

- (=R Algebra (commutativity of multiplication)

=(") Definition of Combination V\ -’-(—Y\ w\gl

=
— <<




Two Proofs of Symmetry (analysis)

Wasn't that a great proof.
Airtight. No disputing it.

Got to say “‘commutativity of multiplication.”

But...do you know why? Can you feel why it's true?



. . 8
Combinatorial Proof of Symmetr %
Jisb e ey )L\m L 4 /(V\"k

Suppose you have n people, and need to choose k people to be on your
team. We will count the number of possible teams two different ways.

Way 1. We choose the k people to be on theteaq. Since order doesn't
matter (you're on the team or not), there a ossible teams.

Way 2. We choose the n — k people to NOT 5e on the Everyone
else is on it. Since order again doesn’t matter, there ssible
ways to choose the team. —

Since we're counting the same thing, the numbers must be equal.
50 (Z) = (nfk)'

—




Pascal’s Rule: (

algebraic proo

n—1

n

(n—1)!

=G+ (5

(zi%( k >‘<k1>!(

(n— 1)!

\____/\/—/
(n — 1)!
n—1—k—1)!  kl(n—1-k)!

(n—1)!

T Dlm—F)  Bn—k-1)
[(n— D)kI(n — k — DI+ [(n — 1)k — D)l(n — k)]

Kk — 1)!(n— k)!(n— k- 1)!

_ (n =)k = Dn—k —1)! [k + (n— k)

Kk — 1)!(n—k)(n—k —1)!
_ (n =)k + (n — k)

kl(n — k)
(n—1)!-n

n!

" Kl(n—k)!

()

T kl(n—k)!

definition of combination
subtraction

Find a common denominator
factor out common terms
Cancel (k — 1)!(n — k — 1)!
Algebra

Definition of combination



Pascal’s Rule: (ro7)+ (™ 1)

combmatonal“ﬁ*f”oo
%\r&; V\()':}_ M
E(ou and n — 1 other people are trying out for a k person teﬂ How

many possible teams are there? —

Way 1. There are n people total, of which we're choosing k (and since it's
a team order doesn't matter) (7).

Way 2: There are two types of teams. Those for which you make the team,

and those for which you don't.
If you do make the team, then k — 1 of the other n — 1 also make it.

If you don't make the team, k of the other n — 1 also make it.
n-—1 n-—1
Overall, by sum rule, (3_7) + (".7).
Since we're computing=tRe~samesaumber two different ways, they must

be equal. So: (7) = (7-1) + (™. 7)



Takeaways

Formulas for factorial, permutations, combinations.

A useful trick for counting is to pretend order matters, then account for
the overcounting at the end (by dividing out repetitions)

When trying to prove facts about counting, try to have each side of the

equation count the same thing.
Much more fun and much more informative than just churning through algebra.



= Principle of Inclusion-Exclusion



Example

How many length 5 strings over the alphabet {a, b, c, ..., z} contain:
Exactly 2 'a’'s OR¢“—— 5

Exactly 1'b'OR & —1 O\O\/XO < (X
No 'X's «—— ([,

For what 4, B,C do we want |AU B U C|?
L/\/'\/



Principle of Inclusion-Exclusion (2 sets)

The sum rule says when A and B are disjoint (no intersection), then
|AU B| = |A]| + |B|.

What about when A and B aren't disjoint?

For two sets: > N b
|JAUB| = |A]| + |B| — |A N B



Principle of Inclusion-Exclusion (3 sets)

For three sets:

[AuBucl=)All+IBl+Icl-[lAnBl-1Bncl-[lAncll+lanBnc]]

5 B



In general:

|JA;UA, U--UA,| =
[Aq| + [Az| + - + [Ay]
—(lA; N Azl + 1A N Ag| + -+ [A NAx [+ Ay N Az + -+ Ay NAL])
+(l[A;nA; NAs| + -+ A2 NAp_1 NAL])

+(-D™"A, nA, NN A,

Add the individual sets, subtract all pairwise intersections, add all three-wise
intersections, subtract all four-wise intersections,..., [add/subtract] the n-wise
Intersection.



PIE Example

How many length 5 strings over the alphabet {a, b, c, ..., z} contain:
Exactly 2 ‘a's OR

Exactly 1'b" OR

NoO X's

For what 4, B,C do we want |AU B U C|?



How many length 5 strings over the

PIE Exam p | e (SetS) alphabet {a, b, c, ..., z} contain:

a T
|l
N e e

=
|

engt
engt
engt

25°

n 5 strings t
N 5 strings t

N 5 strings t

254

Exactly 2 ‘a’'s OR
Exactly 1'b" OR
No 'X's

nat contain exactly 2 ‘a's}

nat contain exactly 1'b’s}

nat contain no 'x’s }

= (g) - 253 (need to choose which “spots” are ‘a’ and remaining string)

(D)



How many length 5 strings over the

Inte rseCtiOnS alphabet {a, b, c, ..., z} contain:
Exactly 2 ‘a’'s OR

Exactly 1'b" OR

No 'X’s
A = {length 5 strings that contain exactly 2 ‘a’s} Al = 35) - 25°
. . B o ) 2 >
B = {length 5 strings that contain exactly 1'b’s} Cl = 2(512 >
C={

ength 5 strings that contain no 'x’s }

- (i) - 24 (choose ‘a’ spots, ‘b’ spot, remaining chars)

()
ANC| = (g) . 243 (choose ‘a’ spots, remaining [non-x"] chars)
(5) - 24*




. . How many length 5 strings over the
Putti Nng It tog ether alphabet {a, b, c, ..., z} contain:
Exactly 2 ‘a’'s OR
Exactly 1'b" OR

A :(g)'ZSS No ‘X's
Bl = (5) - 25*
C =255 JAUBUC| =

=|Al+ Bl +ICI—|AnB|—|AnC|—|BNC|+]|AnBNC|
=(5) - 25%+ (5) - 25*+255 —|[ANB| — [AnC| - [BNC|+|AnBNC]|
=11,875,000 — [ANB| — |[ANC|—|BNC|+|AnBNC]

— (5Y . (3) . 2
ANB|= (2) (1) 24 = 11,875,000 - (3) - (3)- 242 = (3) - 243 = (%) - 24* + |An B N (]
_(5) 43 = 11,875,000 — 1,814,400 + [AN B N C|
AncCl=(3)- 24 ~ 10,060,600 + |[AN B N C|
BNCl= (i) . 244 = 10,060,600 + (3) - () - 232
= 10,060,600 + 15,870
= 10,076,470

AnBncCl=(3) () 232



Practical tips (PIE)

Give yourself clear definitions of A4, B, C.

Make a table of all the formulas you need before you start actually
calculating.

Calculate “size-by-size"” and incorporate into the total.

Basic check: If (in an intermediate step) you ever:

1. Get a negative value

2. Get a value greater than the prior max by adding (after all the single sets)

3. Get a value less than the prior min by subtracting (after all the pairwise
Intersections)

Then something has gone wrong.



~ ' The Binomial Theorem



Binomial Theorem

In high school you probably memorized
(x +y)? = x? + 2xy + y?
And (x + )3 = x3 + 3x%y + 3xy? + y3

The Binomial Theorem tells us what happens for every n:

The Binomial Theorem

n

e =3 (e

=0




Some Intuition

The Binomial Theorem

n

e =3 ()

=0

Intuition: Every monomial on the right-hand-side has either x or y from
each of the terms on the left.

How many copies of x'y™* do you get? Well how many ways are there
to choose i x's and n — i y's? (7).

Formal proof? Induction!



So What?

\([\/eltl...if you saw It before, now you have a better understanding now of why
it's true.

There are also a few cute applications of the binomial theorem to proving

other theorems (usually by plugging in numbers for x and y) — you'll do ©ne
on HW2.

For example, set x =1 and y = 1 then
2" = (14 D" = XiLo() 11" = EL,(}).

l.e. if you sum uF binomial coefficients, you get 2™. Exercise: reprove this
y

equation (directly) with a combinatorial proot (where have we seen 2™
recently?)



=~ The Pigeonhole Principle



Pigeonhole Principle

If you have 5 pigeons, and place them into 4 holes, then...

At least two pigeons are in the same hole.




Pigeonhole Principle (2)

If you have 5 pigeons, and place them into 4 holes, then...

At least two pigeons are in the same hole.
It might be more than two.




Strong Pigeonhole Principle

If you have n pigeons and k pigeonholes, then there is at least one
pigeonhole that has at |least H pigeons.

|a] is the “ceiling” of a (it means always round up, [1.1] = 2, [1] = 1).



An example

If you have to take 10 classes, and have 3 quarters to take them in,
then...

Pigeons: The classes to take
Pigeonholes: The quarter

Mapping: Which class you take the quarter in.

Applying the (generalized) pigeonhole principle, there is at least one
quarter where you take at least [%} = 4 courses.



Practical Tips (PHP)

When the pigeonhole principle is the right tool, it's usually the first thing
you'd think of or the absolute last thing you'd think of.

For really tricky ones, we'll warn you in advance that it's the right
method (you'll see one in the section handout).

When applying the principle, say:

What are the pigeons

What are the pigeonholes

How do you map from pigeons to pigeonholes

Look for — a set you're trying to divide into groups, where collisions
would help you somehow.
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